The Effect of Salinity Changes on the Water Content and Respiration of Marine Invertebrates

1931 ◽  
Vol 8 (3) ◽  
pp. 211-227
Author(s):  
L. C. BEADLE

1. Schlieper's theory of the function of increased oxygen intake by "homoiosmotic" marine invertebrates in dilute sea water in maintaining their body fluids hypertonic to the surrounding water is discussed, and objections are brought forward to the methods used in the experiments on which his conclusions were based. 2. By periodic weighings, and measurements of respiratory rate (under narcotic) by Barcroft manometers, it was found that the weight of N. diversicolor, on transference to water of low salinity, at first increases and then falls, and that the respiratory rate is at first increased and later tends to decrease. 3. With N. cultrifera the weight increases to a higher value and does not sub sequently fall, and the respiratory rate is also increased but to a lesser extent than with N. diversicolor. 4. These differences in the amount of increase in respiratory rate are more marked in water containing only 16.6 per cent, sea water than in water containing 25 per cent, sea water. 5. N. diversicolor maintains its activity while N. cultifera becomes practically inert in dilute water. The latter does not actually die in 25 per cent, sea water after 100 hours, but dies in 16.6 per cent, sea water after about 50 hours. 6. Exposure to M/1000 KCN or to anaerobic conditions in dilute water tends to break down the mechanism by which the free osmotic inflow of water in N. diversicolor is prevented, and the weight curves under these conditions approach the N. cultrifera form. 7. The respiratory rate of G. ulvae increases progressively with dilution of the sea water, and is roughly proportional to the initial difference of osmotic pressure inside and outside the animal. 8. The swelling of Gunda in dilute water is due to swelling of the gut cells, which become much vacuolated. The other tissues appear unaltered. 9. M/1000 KCN or anaerobic conditions cause a greater amount of swelling in Gunda in a given salinity than normally occurs. 10. These experiments seem to give reasonably good support to Schlieper's hypothesis. 11. The mechanism responsible for this "osmotic resistance" in N. diversicolor must be of a somewhat different nature from that in G. ulvae. 12. A rigid distinction between "homoiosmotic" and "poikilosmotic" marine animals cannot be supported.

Since Bottazzi's (1897) first determinations of the osmotic pressure of the body fluids of various marine animals many researches have been performed by other authors, particularly in reference to the permeability of the membranes separating the body from its surroundings. Bottazzi (1897, 1906, 1908, b) investigated individuals belonging to very different groups of animals, and found that the osmotic pressure of the body fluids of marine invertebrates, and of elasmobranchs, is very similar to that of the surroundings, while the osmotic pressure of the blood of teleosts is quite different. Changing the osmotic pressure of the medium, the osmotic pressure of most marine invertebrates, and of elasmobranchs, was shown to change in the same direction (L. Fredericq, 1882, 1904; Quinton, 1897; Dakin, 1908) and to reach, finally, the value of the former. The blood of teleosts is much more independent of the medium, for it shown to change only about 30 percent, in concentration, on transferring the animals from sea water to fresh water or vice versa (Dakin, 1908; Dekhuyzen, 1904: Sumner, 1905); other authors, however (fredericq, 1904: Garrey, 1905) could not field even these variations.


1956 ◽  
Vol 33 (4) ◽  
pp. 730-736 ◽  
Author(s):  
B. LOFTS

1. Palaemonetes varians, variety microgenitor, commonly inhabits only saline water around the British coast. It is, however, abundant in water of extremely low salinity in the Cardiff area, where it occurs in the drainage ditches of farm land adjacent to an area of salt-marsh. 2. Animals from areas of both high and low salinity were subjected, in the laboratory, to a range of salinities varying from pure tap water to concentrated sea water. The rate of respiration at each salinity was measured. 3. The population that inhabited the almost fresh water in the ditches differed physiologically from the salt-water form, although morphologically they were identical. 4. The salt-water population showed a minimum respiratory rate when in a medium of 26% NaCl salinity. This was expected, since the animal is isotonic at this salinity and the osmoregulatory work is minimal. The second population respired least when in a medium of 6% NaCl. The significance of this is discussed.


1930 ◽  
Vol 13 (4) ◽  
pp. 437-444 ◽  
Author(s):  
Albrecht Bethe

The surfaces of all marine invertebrates which have been experimented upon are permeable for water and also for both the salts or their ions which are in solution in their blood and in sea water. The forces which tend to bring the salt content of the blood into equilibrium with the salt content of the surrounding sea water are just as great as the forces which strive to prevent osmotic differences. The skin of these animals, save in the cases where special modifications have arisen, serves only as a protecting barrier preventing the loss of the body colloids.


1932 ◽  
Vol 9 (1) ◽  
pp. 61-68
Author(s):  
K. HUKUDA

1. Several species of marine invertebrates, and an elasmobranch, have been kept in diluted media. The increase of body weight so caused was compared with the resulting dilution of the body fluids. 2. The bounding membrane of the invertebrates was permeable to salts when the animals were immersed in diluted sea water. 3. The bounding membrane of the elasmobranch was semipermeable, i.e. permeable to water but not to solute. There is a close quantitative agreement between the osmotic swelling observed and the diminution of the osmotic pressure of the blood.


1978 ◽  
Vol 174 (3) ◽  
pp. 979-987 ◽  
Author(s):  
Victor A. Zammit ◽  
Eric A. Newsholme

1. The properties of pyruvate kinase and, if present, phosphoenolpyruvate carboxykinase from the muscles of the sea anemone, scallop, oyster, crab, lobster and frog were investigated. 2. In general, the properties of pyruvate kinase from all muscles were similar, except for those of the enzyme from the oyster (adductor muscle); the pH optima were between 7.1 and 7.4, whereas that for oyster was 8.2; fructose bisphosphate lowered the optimum pH of the oyster enzyme from 8.2 to 7.1, but it had no effect on the enzymes from other muscles. Hill coefficients for the effect of the concentration of phosphoenolpyruvate were close to unity in the absence of added alanine for the enzymes from all muscles except oyster adductor muscle; it was 1.5 for this enzyme. Alanine inhibited the enzyme from all muscles except the frog; this inhibition was relieved by fructose bisphosphate. Low concentrations of alanine were very effective with the enzyme from the oyster (50% inhibition was observed at 0.4mm). Fructose bisphosphate activated the enzyme from all muscles, but extremely low concentrations were effective with the oyster enzyme (0.13μm produced 50% activation). 3. In general, the properties of phosphoenolpyruvate carboxykinase from the sea anemone and oyster muscles are similar: the Km values for phosphoenolpyruvate are low (0.10 and 0.13mm); the enzymes require Mn2+ in addition to Mg2+ for activity; and ITP inhibits the enzymes and the inhibition is relieved by alanine. These latter compounds had no effect on enzymes from other muscles. 4. It is suggested that changes in concentrations of fructose bisphosphate, alanine and ITP produce a coordinated mechanism of control of the activities of pyruvate kinase and phosphoenolpyruvate carboxykinase in the sea anemone and oyster muscles, which ensures that phosphoenolpyruvate is converted into oxaloacetate and then into succinate in these muscles under anaerobic conditions. 5. It is suggested that in the muscles of the crab, lobster and frog, phosphoenolpyruvate carboxykinase catalyses the conversion of oxaloacetate into phosphoenolpyruvate. This may be part of a pathway for the oxidation of some amino acids in these muscles.


Author(s):  
John Davenport

When exposed to water of low salinity specimens of Mytilus edulis L. keep their shell valves tightly closed; they do not gape periodically to test the external medium. Exchange of salts and water between the mantle cavity and the environment is thus minimized. Rising salinities are registered by diffusion of salts to the tentaculate portion of the inhalent siphon and not to any other portion of the mantle edge or to any more deeply located structures.


1946 ◽  
Vol 29 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Herbert Shapiro

A study was made of the diffusion of the red pigment echinochrome from the eggs of the sea urchin, Arbacia punctulata, into sea water. Unfertilized eggs retained their pigment, over periods of hours. Outward diffusion of pigment from unfertilized eggs normally is entirely negligible, or does not occur at all. Enchancing the calcium or potassium content of the artificial sea water (while retaining isosmotic conditions) did not induce pigment release. Under anaerobic conditions, unfertilized eggs release pigment in small quantities. Fertilization alone brings about echinochrome release. Fertilized eggs invariably released pigment, whether in normal sea water, or sea water with increased calcium or potassium. This diffusion of the pigment began during the first cleavage, possibly soon after fertilization. The pigment release is not a consequence solely of the cell's permeability to echinochrome (or chromoprotein, or other pigment combination) but is preceded by events leading to a release of echinochrome from the granules in which it is concentrated within the cell. These events may be initiated by activation or by anaerobiosis. The phenomenon was not due to cytolysis.


2020 ◽  
Author(s):  
Shigeki Hosoda ◽  
Ryuichiro Inoue ◽  
Masami Nonaka ◽  
Hideharu Sasaki ◽  
Yoshikazu Sasai ◽  
...  

Abstract Small water parcels with low salinity and high dissolved oxygen (DO) are observed in the main thermocline south of the Kuroshio Extension (KE). The Seaglider data, which was collected for four months beginning in late winter 2014 with fine spatial and temporal resolutions, identified small water parcels characterized by low salinity and high DO in the subsurface layer (26.0–27.0 σθ) with a few ten kilometers and a few ten meters in the horizontal and vertical scales, respectively. Water mass analyses revealed larger negative salinity anomalies (< − 0.05 PSS-78) and positive DO anomalies (> 15 µmol kg− 1) than those of the surrounding water. The characteristics are similar to those of water mass with low salinity and high DO in the subpolar Northwestern Pacific Ocean. Additionally, higher DO anomaly water parcels appear in the upper layer (< 26.7 σθ) while low salinity parcels appear in the lower layer (> 26.7 σθ). Oxygen consumption rates from the apparent oxygen utility suggest that the small water parcels consume less oxygen than the surrounding water, implying that they migrate in a shorter time across the KE after subduction and their characteristics may reflect the sea surface temperature, salinity, and DO in the subduction region. Similar small water parcels represented by high-resolution numerical simulations indicate that they pass through the KE in one month. The simulations support the oxygen consumption rate from the Seaglider observations. The existence of a faster process for water mass migration by meso- and submesoscale subduction processes across the KE affects the amount, subduction, and exchange process of water mass. Our study indicates a small water mass contributes to the exchange process across the KE rapidly, which had not been identified in previous studies. Consequently, detailed observations using multiple Seagliders should capture detailed spatial and temporal variability of the water mass exchange process.


Sign in / Sign up

Export Citation Format

Share Document