scholarly journals THE PERMEABILITY OF THE SURFACE OF MARINE ANIMALS

1930 ◽  
Vol 13 (4) ◽  
pp. 437-444 ◽  
Author(s):  
Albrecht Bethe

The surfaces of all marine invertebrates which have been experimented upon are permeable for water and also for both the salts or their ions which are in solution in their blood and in sea water. The forces which tend to bring the salt content of the blood into equilibrium with the salt content of the surrounding sea water are just as great as the forces which strive to prevent osmotic differences. The skin of these animals, save in the cases where special modifications have arisen, serves only as a protecting barrier preventing the loss of the body colloids.

Since Bottazzi's (1897) first determinations of the osmotic pressure of the body fluids of various marine animals many researches have been performed by other authors, particularly in reference to the permeability of the membranes separating the body from its surroundings. Bottazzi (1897, 1906, 1908, b) investigated individuals belonging to very different groups of animals, and found that the osmotic pressure of the body fluids of marine invertebrates, and of elasmobranchs, is very similar to that of the surroundings, while the osmotic pressure of the blood of teleosts is quite different. Changing the osmotic pressure of the medium, the osmotic pressure of most marine invertebrates, and of elasmobranchs, was shown to change in the same direction (L. Fredericq, 1882, 1904; Quinton, 1897; Dakin, 1908) and to reach, finally, the value of the former. The blood of teleosts is much more independent of the medium, for it shown to change only about 30 percent, in concentration, on transferring the animals from sea water to fresh water or vice versa (Dakin, 1908; Dekhuyzen, 1904: Sumner, 1905); other authors, however (fredericq, 1904: Garrey, 1905) could not field even these variations.


1932 ◽  
Vol 9 (1) ◽  
pp. 61-68
Author(s):  
K. HUKUDA

1. Several species of marine invertebrates, and an elasmobranch, have been kept in diluted media. The increase of body weight so caused was compared with the resulting dilution of the body fluids. 2. The bounding membrane of the invertebrates was permeable to salts when the animals were immersed in diluted sea water. 3. The bounding membrane of the elasmobranch was semipermeable, i.e. permeable to water but not to solute. There is a close quantitative agreement between the osmotic swelling observed and the diminution of the osmotic pressure of the blood.


1931 ◽  
Vol 8 (3) ◽  
pp. 211-227
Author(s):  
L. C. BEADLE

1. Schlieper's theory of the function of increased oxygen intake by "homoiosmotic" marine invertebrates in dilute sea water in maintaining their body fluids hypertonic to the surrounding water is discussed, and objections are brought forward to the methods used in the experiments on which his conclusions were based. 2. By periodic weighings, and measurements of respiratory rate (under narcotic) by Barcroft manometers, it was found that the weight of N. diversicolor, on transference to water of low salinity, at first increases and then falls, and that the respiratory rate is at first increased and later tends to decrease. 3. With N. cultrifera the weight increases to a higher value and does not sub sequently fall, and the respiratory rate is also increased but to a lesser extent than with N. diversicolor. 4. These differences in the amount of increase in respiratory rate are more marked in water containing only 16.6 per cent, sea water than in water containing 25 per cent, sea water. 5. N. diversicolor maintains its activity while N. cultifera becomes practically inert in dilute water. The latter does not actually die in 25 per cent, sea water after 100 hours, but dies in 16.6 per cent, sea water after about 50 hours. 6. Exposure to M/1000 KCN or to anaerobic conditions in dilute water tends to break down the mechanism by which the free osmotic inflow of water in N. diversicolor is prevented, and the weight curves under these conditions approach the N. cultrifera form. 7. The respiratory rate of G. ulvae increases progressively with dilution of the sea water, and is roughly proportional to the initial difference of osmotic pressure inside and outside the animal. 8. The swelling of Gunda in dilute water is due to swelling of the gut cells, which become much vacuolated. The other tissues appear unaltered. 9. M/1000 KCN or anaerobic conditions cause a greater amount of swelling in Gunda in a given salinity than normally occurs. 10. These experiments seem to give reasonably good support to Schlieper's hypothesis. 11. The mechanism responsible for this "osmotic resistance" in N. diversicolor must be of a somewhat different nature from that in G. ulvae. 12. A rigid distinction between "homoiosmotic" and "poikilosmotic" marine animals cannot be supported.


Author(s):  
G. W. Bryan ◽  
Eileen Ward

SUMMARYThe accumulation of 137Cs from sea water has been examined in relation to potassium metabolism in the lobster Homarus vulgaris and in the prawn Palaemon serratus. In unfed animals 137Cs is taken up and lost far more slowly than 42K. Although all the inactive K in the animals can be exchanged with 42K, higher whole-animal concentration factors are reached for 137Cs (about eight for lobsters and twenty-five for prawns). This is because both species have higher plasma/medium ratios for 137Cs than K at equilibrium despite the selective excretion of 137Cs. Also, except for the hepatopancreas in lobsters and fed prawns, all soft tissues can probably attain higher tissue/plasma ratios for 137Cs than inactive K.Uptake of both isotopes has also been studied in the freshwater crayfish Austropotamobius pallipes pallipes. In crayfish in o-i % sea water 137Cs is not concentrated to the same extent as K by whole animals (50-200 for 137Cs against about 4500 for K). Although the situation between plasma and tissues resembles that in the marine animals, 137Cs cannot be accumulated in the plasma to the same degree as K. Crayfish selectively excrete 137Cs in the urine relative to K at a lower concentration than in the plasma.In the accumulation of 137Cs by all species, muscle is the principal limiting factor in uptake and loss, but with 42K the body surface becomes more limiting.Experiments on the absorption of 137Cs from food in prawns and freshwater crayfish have been carried out. In prawns in a constant environment, feeding is probably less important than uptake over the body surface while in crayfish feeding is probably much more important.


1959 ◽  
Vol 36 (1) ◽  
pp. 157-176 ◽  
Author(s):  
J. SHAW

1. The mechanisms of salt and water balance in the East African fresh-water crab, Potamon niloticus, have been investigated. 2. The freezing-point depression of the blood is equivalent to that of a 271 mM./l. NaCl solution. 3. The animals cannot survive in solutions more concentrated than 75% sea water. Above the normal blood concentration, the blood osmotic pressure follows that of the medium. 4. The urine is iso-osmotic with the blood and is produced at a very slow rate. The potassium content is only half that of the blood. 5. The animal loses sodium at a rate of 8 µM./10 g./hr. mainly through the body surface. Potassium loss occurs at one-sixteenth of this rate. 6. Sodium balance can be maintained at a minimum external concentration of 0.05 mM./l. Potassium requires a concentration of 0.07 mM./l. 7. Active absorption of both sodium and potassium occurs. The rate of uptake of sodium depends on the extent of previous sodium loss. The rate of sodium uptake may be affected by such environmental factors as the salt content of the water, temperature and oxygen tension. 8. The normal oxygen consumption rate is 0.72 mg./10 g./hr. A minimum of 2.3% is used in doing osmotic work to maintain salt balance. 9. The salt and water balance in Potamon is discussed in relation to the adaptation of the Crustacea to fresh water. The importance of permeability changes is stressed.


1949 ◽  
Vol 26 (2) ◽  
pp. 182-200
Author(s):  
JAMES D. ROBERTSON

1. Analyses have been made of the ionic composition of the body fluids of some twenty marine invertebrates belonging to five phyla. The body fluids were again analysed after dialysis in collodion sacs against samples of the original sea water in which the animals had been kept. Comparison of the two analyses in terms of weight of water gives a true measure of ionic regulation by taking into account such factors as the Donnan equilibrium and the formation of calcium-protein complexes in those animals with significant concentrations of protein in their blood. 2. Some ionic regulation is found in all the animals examined, but it is most pronounced in the cephalopod Mollusca and the decapod Crustacea. 3. The mesogloeal tissue fluid of the jelly-fish Aurelia showed the following composition (expressed as percentage of concentration in the dialysed fluid): Na 99%, K 106%, Ca 96%, Mg 97%, Cl 104%, SO4 47%. This regulation seems to be brought about by elimination of sulphate and accumulation of potassium by the epithelia bounding the mesogloea, with resultant alteration in the remaining ions in conformity with osmotic equilibrium between the jelly and sea water. 4. In the echinoderms studied only potassium is regulated, values in the perivisceral fluid not exceeding 111% being found, with higher values in the ambulacral fluid. Polychaetes regulated potassium (up to 126%) and sometimes reduced sulphate (92%). 5. Regulation extends to all ions in the decapod Crustacea. In six species the range was Na 104-113%, K 77-128%, Ca 108-131%, Mg 14-97% Cl 98-104%, SO4 32-99%. There is a series Lithodes, Cancer, Carcinus, Palinurtis, Nephrops and Homarus in which magnesium falls from 97 to 14%; the series is roughly in accordance with increase of activity. Analyses given of the secretion from the antennary glands emphasize the importance of these organs in controlling the composition of the blood. They eliminate magnesium, sulphate, and sometimes calcium, and conserve the other ions. 6. Lamellibranchs and gastropods accumulate potassium and calcium, and eliminate sulphate to a small degree. Range of values in six species was Na 97-101%, K 107-155%, Ca 103-112%, Mg 97-103%, Cl 99-101%, SO4 87-102%. 7. Considerable ionic regulation exists in the Cephalopoda, ranges being Na 95-98%, K 152-219%, Ca 94-107%, Mg 102-103%, Cl 101-104%, SO4 29-81%. In Eledone and Sepia differential excretion by renal organs is an important factor in this. Sulphate and sodium are eliminated in quantities greater than would be present in an ultrafiltrate of the plasma, tending to lower these values, whereas the other ions are excreted in proportions below those of an ultrafiltrate, tending to elevate their concentrations in the blood. 8. The ratio of equivalents Na+K/Ca+Mg in the body fluids of these marine invertebrates remains at the sea-water figure of 3.8 in Aurelia, echinoderms, anneli worms, and lamellibranchs, but decreases in the gastropods and cephalopods to 3.5. In the decapod Crustacea, owing principally to reduction of magnesium, it increases from 3.8 in Lithodes to 9 and 12 in the Palinura and Astacura genera.


1939 ◽  
Vol 16 (2) ◽  
pp. 155-177
Author(s):  
J. D. ROBERTSON ◽  
D. A. WEBB

Methods are presented for the estimation of sodium, potassium, calcium, magnesium, chloride and sulphate in sea water and in other solutions, such as the blood and body fluids of marine animals, whose inorganic composition is similar to that of sea water. The estimations may be performed on 1 ml. samples, and the limit of error is about 2%. Sodium is precipitated and weighed as sodium zinc uranyl acetate; potassium is precipitated as potassium silver cobaltinitrite which is titrated with ceric sulphate; calcium is titrated with ceric sulphate after two precipitations as oxalate; magnesium is precipitated with hydroxyquinoline and the precipitate brominated and estimated iodometrically; chloride is treated with silver iodate and the released iodate estimated iodometrically; sulphate is titrated with barium chloride using sodium rhodizonate as indicator.


1939 ◽  
Vol 16 (4) ◽  
pp. 387-397
Author(s):  
JAMES D. ROBERTSON

1. Analyses have been made of the body fluids of Echinus esculentus, and two decapod Crustacea, Homarus vulgaris and Cancer pagurus, before and after dialysis with sea water in which they were living. 2. The composition of the perivisceral fluid of Echinus is identical with that of sea water, complete physico-chemical equilibrium existing between the two fluids. 3. The blood plasmas of Homarus and Cancer are maintained in dynamic equilibrium with sea water. They contain more Na, K and Ca and less Cl, Mg and SO4 than sea water. 4. The antennary gland fluid of Cancer contains less Na, K, Ca and Cl and more Mg and SO4 than the blood plasma. 5. The importance of the antennary glands and the surface membranes in regulating the inorganic composition of the blood is discussed.


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


Sign in / Sign up

Export Citation Format

Share Document