Variables affecting the strength of balsa wood

1976 ◽  
Vol 11 (4) ◽  
pp. 225-234 ◽  
Author(s):  
P D Soden ◽  
R D McLeish

Tests have been carried out to determine the strength of balsa wood and its variation with density. Particular attention is paid to the tensile strength of balsa loaded at different angles to the grain and a simple theory of failure is derived from the results. The compressive strength and modulus of elasticity are also reported. Similarities between the mechanical behaviour of balsa wood and unidirectional fibre-reinforced composites are discussed. Adequate data are presented for the design of balsa wood structures.

1997 ◽  
Vol 6 (5) ◽  
pp. 096369359700600 ◽  
Author(s):  
C. S. Lee ◽  
W. Hwang

The rule of mixtures was modified based on the concept of effective fibre volume fraction. The degradation parameter of effective fibre volume fraction was proposed in consideration of the microgeometry of composite components. It was shown that the modified rule has good agreement with the experimental strength data and the degradation parameter of effective fibre volume fraction used in this study can be used on general composites.


Author(s):  
P.A. Carraro ◽  
L. Maragoni ◽  
A.S. Paipetis ◽  
M. Quaresimin ◽  
L. Tzounis ◽  
...  

2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Sign in / Sign up

Export Citation Format

Share Document