Leakage characteristics of flanged pipe joints

1977 ◽  
Vol 12 (1) ◽  
pp. 29-36 ◽  
Author(s):  
H Fessler ◽  
D A Perry

Standard flanges for five widely differing pressure ratings, having a wide range of different joint surface profiles, were sealed by flat rubber or asbestos gaskets. Different initial bolt tensions were applied and the variation of clamping force with internal pressure was measured up to leakage of the joint. The joint efficiency, defined as: (end thrust due to leakage pressure on bore area of pipe)/(total initial bolting force), is not affected by variations in joint-face surface finish if machining grooves across the joint surface are avoided. Minimum values of joint efficiency are given. The effects of gasket material, width and thickness and number of bolts on joint efficiency are considered.

Author(s):  
Thomas Métais ◽  
Andrew Morley ◽  
Laurent de Baglion ◽  
David Tice ◽  
Gary L. Stevens ◽  
...  

Additional fatigue rules within the ASME Boiler and Pressure Vessel Code have been developed over the past decade or so, such as those in Code Case N-792-1 [1], which provides an acceptable method to describe the effects of BWR and PWR environments on the fatigue life of components. The incorporation of environmental effects into fatigue calculations is performed via an environmental factor, Fen, and depends on factors such as the temperature, dissolved oxygen and strain rate. In the case of strain rate, lower strain rates (i.e., from slow transients) aggravate the Fen factor which counters the long-held notion that step (fast) transients cause the highest fatigue usage. A wide range of other factors, such as surface finish, can have a deleterious impact on fatigue life, but their impact on fatigue life is typically considered by including transition sub-factors to construct the fatigue design curve from the mean behavior air curve rather than in an explicit way, such as the Fen factor. An extensive amount of testing and evaluation has been conducted and reported in References [2] [3] [4] [5] [6] [7] and [8] that were used to both revise the transition factors and devise the Fen equations contained in Code Case N-792-1. The testing supporting the definition of Fen was performed on small-scale laboratory specimens with a polished surface finish on the basis that the Fen factor is applicable to the design curve without any impact on the transition factors. The work initiated by AREVA in 2005 [4] [5] [6] suggested, in testing of austenitic stainless steels, an interaction between the two aggravating effects of surface finish and PWR environment on fatigue damage. These results have been supported by testing carried out independently in the UK by Rolls-Royce and AMEC Foster Wheeler (now Wood Group) [7], also on austenitic stainless steels. The key finding from these investigations is that the combined detrimental effects of a PWR environment and a rough surface finish are substantially less than the sum of the two individual effects. These results are all the more relevant as most nuclear power plant (NPP) components do not have a polished surface finish. Most NPP component surfaces are either industrially ground or installed as-manufactured. The previous studies concluded that explicit consideration of the combined effects of environment and surface finish could potentially be applicable to a wide range of NPP components and would therefore be of interest to a wider community: EDF has therefore authored a draft Code Case introducing a factor, Fen-threshold, which explicitly quantifies the interaction between PWR environment and surface finish, as well as taking some credit for other conservatisms in the sub-factors that comprise the life transition sub-factor used to build the design fatigue curve . The contents of the draft Code Case were presented last year [9]. Since then, other international organizations have also made progress on these topics and developed their own views. The work performed is applicable to Austenitic Stainless Steels only for the time being. This paper aims therefore to present an update of the draft Code Case based on comments received to-date, and introduces some of the research and discussions which have been ongoing on this topic as part of an international EPRI collaborative group on environmental fatigue issues. It is intended to work towards an international consensus for a final version of the ASME Code Case for Fen-threshold.


Author(s):  
Thomas Métais ◽  
Stéphan Courtin ◽  
Laurent De Baglion ◽  
Cédric Gourdin ◽  
Jean-Christophe Le Roux

Fatigue rules from ASME have undergone a significant change over the past decade, especially with the inclusion of the effects of BWR and PWR environments on the fatigue life of components. The incorporation of the environmental effects into the calculations is performed via an environmental factor, Fen, which is introduced in ASME BPV code-case N-792 [5], and depends on factors such as the temperature, dissolved oxygen and strain rate. Nevertheless, a wide range of factors, such as surface finish, have a deleterious impact on fatigue life, but their contribution to fatigue life is typically taken through the transition factors to build the fatigue design curve [2] and not in an explicit way, such as the Fen factor. The testing supporting the rules pertaining to Environmental Fatigue Correction Factor (Fen) Method in ASME BPV was performed on specimens with a polished surface finish and on the basis that the Fen factor was applicable without alteration of the historical practice of building the design curve through transition factors. The extensive amount of testing conducted and reported in References [2] and [7] (technical basis for ASME BPV current EAF rules) was used to propose a set of transition coefficients from the mean air curve to the design curve on one hand, and on the other hand to build a Fen factor expression, defined as the difference between the life in air and in PWR environments. The work initiated by AREVA in 2005 [9] [10] [11] demonstrated that there is a clear interaction between the two aggravating effects of surface finish and PWR environment for fatigue damage, which was not experimentally tested in the References [2] and [7]. These results have clearly been supported by testing carried out independently in the UK by Rolls-Royce and AMEC FW [12]. These results are all the more relevant as most NPP components do not have a polished surface finish. Most surfaces are either industrially polished or installed as-manufactured. It was concluded that this proposal could potentially be applicable to a wide range of components and could be of interest to a wider community. EDF/Areva/CEA have therefore authored a code-case introducing the Fen-threshold, a factor which explicitly quantifies the interaction between PWR environment and surface finish. This paper summarizes this proposal and provides the technical background and experimental work to justify this proposal.


Author(s):  
Alwin Varghese ◽  
Vinay Kulkarni ◽  
Suhas S. Joshi

Abstract Cutting mechanism in micromilling is governed by the tool condition along with the machining parameters and workpiece material properties. A rapid tool wear in micromilling often deteriorates the surface quality, which could be due to the occurrence of plowing. The effects of tool condition on the transition in cutting mechanisms from shearing to plowing have not been adequately addressed in micro milling. In this work, we attempt to correlate cutting mechanism with tool conditions, so that their influence on force and surface profiles are investigated. Micro milling experiments are performed to investigate these correlations. A fluctuation parameter has been defined to quantify the fluctuation in force signal. It is evident that as the feed varies from 0.2 μm/teeth to 5 μm/teeth, the fluctuation reduces and similar fluctuations are reflected on the generated surface also. The surfaces corresponding to lower force fluctuations has an Ra value less than 350 nm. As cutting edge radius increases, surface finish decreases. However, with chipping, new sharper cutting edges are formed which may improve the surface finish locally but contribute to the overall variation in the surface profiles.


Author(s):  
Wenxing W. Zhou ◽  
Ji Bao

The present study quantifies probabilistic characteristics of the wall thickness of welded pipe joints in onshore gas transmission pipelines based on about 5900 field-measured wall thicknesses collected from a pipeline system in Canada. The collected data cover a wide range of the pipe nominal wall thickness, from 3.18 to 16.67 mm. By considering the measurement error involved in the collected wall thickness data, statistical analyses indicate that the actual-over-nominal wall thickness ratio (AONR) follows a normal distribution with a mean of 1.01 and a coefficient of variation (COV) ranging from 1.6 to 2.2% depending on the nominal pipe wall thickness. The implications of the developed AONR statistics for the reliability analysis of corroded pipe joints are investigated. This study provides key input to the reliability-based design and assessment of pipelines with respect to various threats such as metal-loss corrosion and stress corrosion cracking.


2020 ◽  
Vol 60 (1) ◽  
pp. 184 ◽  
Author(s):  
Abbas Movassagh ◽  
Xi Zhang ◽  
Elaheh Arjomand ◽  
Manouchehr Haghighi

Surface roughness is a crucial parameter in the hydraulic fracturing process, affecting rock toughness, fluid flow and proppant transport; however, the scale-dependent nature of hydraulic fracture surfaces is not well studied. In this paper, we examined four fractal methods, compass, box-counting, variation and roughness-length, to evaluate and compare the fractal dimension of the surface roughness profiles created by laboratory hydraulic fracturing. Synthetic surface profiles were generated by the Weierstrass-Mandelbrot function, which was initially used to test the accuracy of the four methods. Each profile had a predefined fractal dimension that was revisited by these methods. Then, the fractal analysis was performed for experimental fracture surfaces, which were created by a hydraulic fracturing experiment in a true triaxial situation. By comparing fractal analysis results, we found that for both synthetic and laboratory fracture height profiles, the roughness-length method provides a relatively more reliable estimation of the fractal dimension. This method predicts the dimension for synthetic surface within an error of less than 1%, considering a wide range of surface heights from centimetres down to micrometres. By increasing the fractal dimension of surface profiles, the error of fractal estimation increased for all four methods. Among them, the variation method provided the closest results to the roughness-length method when considering both experimental and synthetic surfaces. The evaluated fractal dimension may provide a guideline for either field- or laboratory-scale hydraulic fracturing treatments to evaluate the effects of surface roughness on fracture growth.


Alloy Digest ◽  
1978 ◽  
Vol 27 (1) ◽  

Abstract DYNA-LOY 41L43 is a cold-drawn alloy steel developed for those applications that require excellent machinability along with a hardness range of Rockwell C 33 to 55. Its chemical composition permits maximum machinability and good surface finish for the tensile strength range 150,000 to 280,000 psi. It is recommended for a wide range of uses such as gears, bushings and fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-341. Producer or source: Western Cold Drawn Steel, A Division of Stanadyne.


Author(s):  
N. Abuaf ◽  
R. S. Bunker ◽  
C. P. Lee

Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil which was grit blast and Codep coated produced an average roughness of 2.33 μm, one which was grit blast, tumbled, and Aluminide coated produced 1.03 μm roughness, and another which received further post coating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds Analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the rumbling process, with smaller improvements realized from polishing.


1975 ◽  
Vol 10 (2) ◽  
pp. 71-76 ◽  
Author(s):  
H Fessler ◽  
D A Perry

Three pairs of aluminium-brass 100-mm-bore flange models with different surface finishes of the joint faces have been subjected to known bolting forces and internal pressures up to seven times the rated pressure at room temperature. Hard and soft flat gaskets were used and it was found that the joint efficiency was independent of gasket material, surface finish, and initial bolt tension. Surface strains on the outer surfaces of the tubes and flange rings were measured with electrical-resistance strain gauges where these could be fitted. These results are also presented. The flanges did not fail; tests ended when the loose steel rings touched owing to excessive deformation, so that the gaskets were prevented from sealing.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
James Zhu ◽  
Shiv G. Kapoor

A hybrid thermoplastic forming process involving sequential micromolding and microdrawing operations is developed to manufacture the multifacet/curvilinear geometries found on most surgical blades. This is accomplished through an oblique drawing technique, i.e., drawing with a nonzero inclination angle. By applying time-varying force profiles during the drawing operation, a wide range of complex blade geometries is possible. Experiments have exhibited positive results across several multifacet and curvilinear blade geometries. Manufacturing process capabilities are quantitatively evaluated and experimental results have measured the bulk metallic glass (BMG) blade cutting edge radii to be consistently less than 15 nm, rake face surface roughness Ra to be on the order of 20 nm, and edge straightness deviations to be less than 5 μm root-mean-square (RMS) while retaining an amorphous atomic structure.


Sign in / Sign up

Export Citation Format

Share Document