scholarly journals Numerical analysis of stresses at oblique holes in plates subjected to tension and bending

1995 ◽  
Vol 30 (4) ◽  
pp. 317-323 ◽  
Author(s):  
A Tafreshi ◽  
T E Thorpe

Stress analysis of a series of thick, wide, flat plates with oblique holes subjected to uniaxial tension and out-of-plane bending has been carried out using the finite element method (FEM), and in some cases the boundary element method (BEM). Different plate thickness-hole diameter ratios, angles of hole obliquity and orientation have been considered to provide stress concentration factors at such holes. The work covers plate thickness-hole diameter ratios from 1.3 to 3.0, hole obliquity angles from 0 to 60° and orientation of the major axis of the surface ellipse relative to the applied load direction of 0 to 90°. The results for uniaxial tension have been compared with those determined using the photoelastic frozen-stress technique in order to verify the finite element models before proceeding to the bending cases, which provide new data.

1990 ◽  
Vol 112 (2) ◽  
pp. 184-187 ◽  
Author(s):  
G. D. Lewis ◽  
Y. J. Chao

Trunnion piping elbows are commonly used in piping systems in power and chemical plants. The flexibility of the trunnion piping elbows is normally less than that of the plain piping elbows. In this paper, the finite element method is used to derive the in-plane and out-of-plane flexibility factors of trunnion piping elbows. The results can be easily adopted into the piping flexibility analysis.


2003 ◽  
Vol 30 (2) ◽  
pp. 381-390
Author(s):  
L H You ◽  
J J Zhang ◽  
H B Wu ◽  
R B Sun

In this paper, a numerical method is developed to calculate deformations and stresses of the body of dry gas holders under gas pressure. The deformations of the wall plates are decomposed into out-of-plane bending and in-plane deformation. The out-of-plane bending of the wall plates is described by the theory of orthotropic plates and the in-plane deformation by the biharmonic equation of flat plates under plane stress. The theories of beam columns and beams are employed to analyze the columns and corridors, respectively. By considering compatibility conditions between the members and boundary conditions, equations for the determination of deformations and stresses of dry gas holders under gas pressure are obtained. Both the proposed approach and the finite element method are used to investigate the deformations and stresses of the body of a dry gas holder under gas pressure. The results from the proposed method agree with those from the finite element method. Because far fewer unknowns are involved, the proposed method is computationally more efficient than both the finite element method and the series method developed from the theory of stiffened plates.Key words: numerical approach, body of dry gas holders, gas pressure.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1088
Author(s):  
Marta Kuříková ◽  
David Sekal ◽  
František Wald ◽  
Nadine Maier

This paper presents the behaviour and design procedure of bolted connections which tend to be sensitive to block shear failure. The finite element method is employed to examine the block shear failure. The research-oriented finite element method (RFEM) model is validated with the results of experimental tests. The validated model is used to verify the component-based FEM (CBFEM) model, which combines the analysis of internal forces by the finite element method and design of plates, bolts and welds by the component method (CM). The CBFEM model is verified by an analytical solution based on existing formulas. The method is developed for the design of generally loaded complicated joints, where the distribution of internal forces is complex. The resistance of the steel plates is controlled by limiting the plastic strain of plates and the strength of connectors, e.g., welds, bolts and anchor bolts. The design of plates at a post-critical stage is available to allow local buckling of slender plates. The prediction of the initial stiffness and the deformation capacity is included natively. Finally, a sensitivity study is prepared. The studied parameters include gusset plate thickness and pitch distance.


2012 ◽  
Vol 466-467 ◽  
pp. 366-370
Author(s):  
Fue Han ◽  
Chang Qing Chen ◽  
Ya Peng Shen

Through the finite element method, the elastic modulus and Poisson ratio out of plane of the honeycomb nanoporous materials are obtained. In the end, the values are contrasted with the scale values. Results show that the values are same to the scale values.


1978 ◽  
Vol 100 (2) ◽  
pp. 144-149 ◽  
Author(s):  
T. E. Kullgren ◽  
F. W. Smith ◽  
G. P. Ganong

The finite element-alternating method, a linear elastic solution technique, is refined and applied to problems of quarter-elliptical cracks in irregular bodies. The method involves the iterative superposition of a finite element solution for stresses in an unflawed body and an analytic solution for stresses in an infinite solid containing a flat elliptical crack. Mode-one stress intensity factors are presented along the periphery of quarter-elliptical cracks emanating from open fastener holes in flat plates. Results are shown for a variety of crack geometries and two hole-diameter to plate-thickness ratios. Comparisons are made with experimental results of other authors.


2018 ◽  
Vol 54 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Dongmei Wang ◽  
Ning Liang ◽  
Yanfeng Guo

The finite element model for paper honeycomb was constructed, and the finite element method of out-of-plane compression for the paper honeycomb was studied. Then four kinds of paper honeycomb with different structural parameters were simulated and analyzed using finite element software ABAQUS. Moreover, the results obtained from finite element method were verified based on the existing theoretical research results and experimental results, respectively. The results show that stress–strain curves obtained from finite element method clearly show the four deformation stages of the paper honeycomb under out-of-plane compression, which is basically consistent with the trend of the typical curve. The values of initial peak stress, plateau stress and densification strain are close to the theoretical results. The stress–strain curves and deformation contours coincide with experiments well. The differences of initial peak stress σpk, plateau stress σpl and densification strain εD between theoretical, finite element method and experimental results are less than 15%. Therefore, the finite element method can be used to analyze the stress–strain curves and deformation characteristics of paper honeycomb. In addition, the results also show that the thickness of specimen has little effect on the stress and strain. However, people often prefer to use the thicker paper honeycomb to get better cushioning effect in practical applications, which was explained.


Author(s):  
ZhiYong An ◽  
Yenwen Lu

This paper reports a theoretical study of the pneumatic balloon-jointed actuation, which has been utilized in the microfinger and the microhand to perform an out-of-plane rotation [1]. The finite element method (FEM) is utilized to describe and to predict the performance of this actuation, in terms of the actuation angles, forces, and structure stiffness. Several related geometrical parameters have been studied, providing the guidelines of the micro balloon-jointed actuation.


Sign in / Sign up

Export Citation Format

Share Document