Effect of the welding sequence in the circumferential direction on residual stress distribution in a thin-walled pipe weld

Author(s):  
C-H Lee ◽  
K-H Chang
1981 ◽  
Vol 103 (1) ◽  
pp. 66-75 ◽  
Author(s):  
E. F. Rybicki ◽  
R. B. Stonesifer ◽  
R. J. Olson

The effect of a girth-weld-induced residual stress field on the linear elastic fracture mechanics of a thin-walled pipe is examined. The procedure for using the residual stress distribution to compute KI and KII for a circumferential crack which is growing radially is described. In addition to the two-pass girth weld, stress intensity factors are computed for a residual stress distribution in a flat plate and for a hypothetical residual stress state in a second thin-walled pipe. The computed stress intensity factor for the flat plate geometry and its residual stress distribution are compared with a solution from the literature as a check on the computational procedure. The through-the-thickness residual stress distribution due to the two-pass girth weld is similar to a half-cosine wave. For purposes of comparison, the hypothetical through-the-thickness distribution selected for the second pipe is similar to a full cosine wave. The stress intensity factor is presented as a function of crack depth for a crack initiating on the inner surface of the pipe. The redistribution of residual stresses due to crack growth is also shown for selected crack lengths. The study shows that residual stress-induced crack growth in pipes can be significantly different from that in flat plates due to the possibility of locked-in residual bending moments in the pipe. These locked-in moments can have effects similar to externally applied loads and can either promote or restrain crack growth. A residual stress distribution is illustrated in which crack growth, if initiated, would continue through the entire wall. Also, a residual stress distribution is illustrated for which the crack could arrest after a certain amount of growth.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

This work investigates the temperature distribution, deformation and residual stress in steel plates as a result of different sequences of welding. The single-pass gas tungsten arc welding process is simulated by a three dimensional nonlinear thermo-elasto-plastic approach. It is observed that the distribution of residual stress varies through the direction of plate thickness. It is concluded that the welding sequence affects not only the welding deformation but also the residual stress mainly in the lower layer of the plates. An in-depth discussion on the pattern of residual stress distribution is presented, especially on the width of the tension zone. Smaller residual tension zone and slightly lower compressive stress are found in thicker plate.


2019 ◽  
Vol 26 (2) ◽  
pp. 299-308
Author(s):  
Rong Li ◽  
Jun Xiong

Purpose An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features. Design/methodology/approach A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part. Findings Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces. Originality/value The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.


2019 ◽  
Vol 25 (8) ◽  
pp. 1359-1369 ◽  
Author(s):  
Changpeng Chen ◽  
Jie Yin ◽  
Haihong Zhu ◽  
Xiaoyan Zeng ◽  
Guoqing Wang ◽  
...  

Purpose High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part. Design/methodology/approach A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered. Findings The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm. Originality/value The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.


1999 ◽  
Vol 122 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Masahito Mochizuki ◽  
Makoto Hayashi ◽  
Toshio Hattori

Residual stress in a large-diameter multi-pass butt-welded pipe joint was calculated for various welding pass sequences by thermal elastic-plastic analysis using the finite element method. The pipe joint used had an X-shaped groove, and the sequences of welding passes were changed. The distribution of residual stress depends on the welding pass sequences. The mechanism that produces residual stress in the welded pipe joint was studied in detail by using a simple prediction model. An optimum welding sequence for preventing stress-corrosion cracking was determined from the residual stress distribution. [S0094-9930(00)00701-0]


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5980
Author(s):  
Chunliang Mai ◽  
Xue Hu ◽  
Lixin Zhang ◽  
Bao Song ◽  
Xiongfei Zheng

In this paper, based on Simufact Welding finite element analysis software, a numerical simulation of the temperature and residual stress distribution of the weldolet-header multi-layer multi-pass welding process is carried out, and the simulation results are verified through experiments. The experimental results are in good agreement with the numerical simulation results, which proves the validity of the numerical simulation results. Through the results of the numerical simulation, the influence of the welding sequence and interlayer temperature on the temperature and residual stress distribution at different locations of the saddle-shaped weld was studied. The results show that the temperature and residual stress distribution on the header and weldolet are asymmetric, and the high-stress area of the saddle-shaped welded joint always appears at the saddle shoulder or saddle belly position. When the interlayer temperature is 300 °C, the peak residual stress reaches a minimum of 428.35 MPa. Adjusting the welding sequence can change the distribution trend of residual stress. There is no high-stress area on the first welding side of the two-stage welding path-2. The peak values of residual stresses for continuous welding path-1 and two-stage welding path-2 are 428.35 MPa and 434.01 MPa, respectively, which are very close to each other.


2015 ◽  
Vol 10 (35) ◽  
pp. 125-131 ◽  
Author(s):  
Ali Mehmanparast ◽  
Oyewole Adedipe ◽  
Feargal Brennan ◽  
Amir Chahardehi

Sign in / Sign up

Export Citation Format

Share Document