The performance of polycrystalline cubic boron nitride tools in continuous, semi-interrupted, and interrupted hard machining

Author(s):  
T Halpin ◽  
G Byrne ◽  
J Barry ◽  
E Ahearne

Polycrystalline cubic boron nitride (PCBN) cutting tools have enabled large-scale industrial hard machining owing to their high hot hardness and wear resistance. Experience clearly shows that tool requirements vary depending on the presence and severity of interrupts in the workpiece. The interrelationships between workpiece interruption parameters and tool wear and performance are assessed using a programme of continuous, semi-interrupted, and interrupted hard machining tests. A hypothesis for observed variations in wear behaviour between different PCBN grades and test conditions is developed on the basis of detailed tool wear scar analyses.

2008 ◽  
Vol 368-372 ◽  
pp. 1788-1790
Author(s):  
X.J. Ren ◽  
Ming Zhi Wang

Polycrystalline cubic boron nitride (PCBN) is formed by sintering cubic boron nitride particles (cBN) at high temperature and high pressure. In this process, a network of cBN particles is formed by intergrowth and bridging between the particle phases. The response of the aggregate to applied stresses in process such as hard machining, will therefore principally involve the deformation of this skeletal structure. In this work, the microstructure and hot hardness and adhesion properties of three high-density PCBN aggregates were comparatively studied. The results were correlated to their cutting performance and wear modes in machining a carbide-based hardfacing material.


2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2012 ◽  
Vol 488-489 ◽  
pp. 724-728 ◽  
Author(s):  
Tadahiro Wada

Using polycrystalline cubic boron nitride compact (cBN) tools, which have different cBN contents and cBN particle sizes, the influences of both the cBN content and the cBN particle size on tool wear in turning of hardened steel at various cutting speeds was experimentally investigated. Three types of cBN tools (a cBN content of 45-55% and 75%, and a cBN particle size of 0.5 μm and 5 μm, respectively) were tested. Furthermore, three kinds of chamfered and honed cutting edges were also used. The main results obtained are as follows: (1) In the case of the cBN tools with the same cBN particle size of 5.0 μm, the tool life of the cBN tool with a cBN content of 75% was longer than that of the cBN tool with a cBN content of 45% at low cutting speed. However, at high cutting speed, the tool life of the cBN tool with a cBN content of 75% was shorter. (2) The tool life of the cBN tool with both a cBN content of 55% and a cBN particle size of 0.5 μm was the longest. (3) The tool wear of cBN tools decreased with a decrease in chamfer width.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093849
Author(s):  
Haidong Yang ◽  
Zhengguang Han ◽  
Xiquan Xia ◽  
Qidong Wang ◽  
Juchen Zhang ◽  
...  

Micro-textured cutting tools were widely reported due to the improved cutting performance, for example, the reduction of cutting forces. However, the cutting performance is significantly dependent on the parameters of the micro-textures. In this work, some polycrystalline cubic boron nitride tools with designed circular micro-textures were designed and manufactured by laser processing technology, and used to machine powder metallurgy materials. The effect of micro-texture parameters (diameter, depth and density) on the cutting forces ( FX, FY, FZ and Fr) was studied by an orthogonal test, the effect of cutting velocity on the cutting force was also studied. The results have shown that the pit diameter and depth have more significant effect on the cutting forces than the cutting velocity and pit density. As compared with the non-textured tools, the textured tools can effectively reduce the cutting forces and the optimal cutting forces were achieved at parameters as 230 μm for diameter, 90 μm for depth, 20% for density and 110 m/min for cutting velocity. The present findings are of significance for the design of polycrystalline cubic boron nitride cutting tools and the processing of powder metallurgy materials.


Sign in / Sign up

Export Citation Format

Share Document