Compressor blade leading edges in subsonic compressible flow

Author(s):  
L Tain ◽  
N. A. Cumpsty

The flow around the leading edge of a compressor blade is interesting and important because there is such a strong interaction between the viscous boundary layer flow and the inviscid flow around it. As the velocity of the inviscid flow just outside the boundary layer is increased from subsonic to supersonic, the type of viscous-inviscid interaction changes; this has important effects on the boundary layer downstream and thus on the performance of the aerofoil or blade. An investigation has been undertaken of the flow in the immediate vicinity of a simulated compressor blade leading edge for a range of inlet Mach numbers from 0.6 to 0.95. The two-dimensional aerofoil used has a circular leading edge on the front of a flat aerofoil. The incidence, Reynolds number and level of free-stream turbulence have been varied. Measurements include the static pressure around the leading edge and downstream and the boundary layer profile far enough downstream for the leading edge bubble to have reattached. Schlieren pictures were also obtained. The flow around the leading edge becomes supersonic when the inlet Mach number is 0.7 for the zero-incidence case; for an inlet Mach number of 0.95 the peak Mach number was approximately 1.7. The pattern of flow around the leading edge alters as the Mach number is increased, and at the highest Mach number tested here the laminar separation bubble is removed. Positive incidence, raised free-stream turbulence or increased Reynolds number at intermediate inlet Mach numbers tended to promote flow patterns similar to those seen at the highest inlet Mach number. Both increased free-stream turbulence and increased Reynolds number, for the same Mach number and incidence, produced thinner shear layers including a thinner boundary layer well downstream. The measurements were supported by calculations using the MSES code (the single aerofoil version of the MISES code); the calculations were helpful in interpreting the measured results and were demonstrated to be accurate enough to be used for design purposes.

1995 ◽  
Vol 117 (1) ◽  
pp. 115-125 ◽  
Author(s):  
R. E. Walraevens ◽  
N. A. Cumpsty

Results are presented for separation bubbles of the type that can form near the leading edges of thin compressor or turbine blades. These often occur when the incidence is such that the stagnation point is not on the nose of the aerofoil. Tests were carried out at low speed on a single aerofoil to simulate the range of conditions found on compressor blades. Both circular and elliptic shapes of leading edge were tested. Results are presented for a range of incidence, Reynolds number, and turbulence intensity and scale. The principal quantitative measurements presented are the pressure distributions in the leading edge and bubble region, as well as the boundary layer properties at a fixed distance downstream, where most of the flows had reattached. Reynolds number was found to have a comparatively small influence, but a raised level of free-stream turbulence has a striking effect, shortening or eliminating the bubble and increasing the magnitude of the suction spike. Increased free-stream turbulence also reduces the boundary layer thickness and shape parameter after the bubble. Some explanations of the processes are outlined.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
A. Samson ◽  
S. Sarkar

This paper describes the change in the transition mechanism of a separated boundary layer formed from the semicircular leading-edge of a constant thickness airfoil as the free-stream turbulence (fst) increases. Experiments are carried out in a low-speed wind tunnel for three levels of fst (Tu = 0.65%, 4.6%, and 7.7%) at two Reynolds numbers (Re) 25,000 and 55,000 (based on the leading-edge diameter). Measurements of velocity and surface pressure along with flow field visualizations are carried out using a planar particle image velocimetry (PIV). The flow undergoes separation in the vicinity of leading-edge and reattaches in the downstream forming a separation bubble. The shear layer is laminar up to 20% of separation length, and then, the perturbations are amplified in the second-half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Tu. At low fst, the primary mode of instability of the shear layer is Kelvin–Helmholtz (K-H), although the local viscous effect may not be neglected. At high fst, the mechanism of shear layer rollup is bypassed with transient growth of perturbations along with evidence of spot formation. The predominant shedding frequency when normalized with respect to the momentum thickness at separation is almost constant and shows a good agreement with the previous studies. After reattachment, the flow takes longer length to approach a canonical boundary layer.


2000 ◽  
Vol 123 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Ralph J. Volino ◽  
Lennart S. Hultgren

Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2 and 7 percent) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains nonturbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions, transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re=50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence, and intermittency profiles are presented.


2011 ◽  
Vol 681 ◽  
pp. 370-410 ◽  
Author(s):  
JOHN D. COULL ◽  
HOWARD P. HODSON

This paper examines the transition process in a boundary layer similar to that present over the suction surfaces of aero-engine low-pressure (LP) turbine blades. This transition process is of significant practical interest since the behaviour of this boundary layer largely determines the overall efficiency of the LP turbine. Modern ‘high-lift’ blade designs typically feature a closed laminar separation bubble on the aft portion of the suction surface. The size of this bubble and hence the inefficiency it generates is controlled by the transition between laminar and turbulent flow in the boundary layer and separated shear layer. The transition process is complicated by the inherent unsteadiness of the multi-stage machine: the wakes shed by one blade row convect through the downstream blade passages, periodically disturbing the boundary layers. As a consequence, the transition to turbulence is multi-modal by nature, being promoted by periodic and turbulent fluctuations in the free stream and the inherent instabilities of the boundary layer. Despite many studies examining the flow behaviour, the detailed physics of the unsteady transition phenomena are not yet fully understood. The boundary-layer transition process has been studied experimentally on a flat plate. The opposing test-section wall was curved to impose a streamwise pressure distribution typical of modern high-lift LP turbines over the flat plate. The presence of an upstream blade row has been simulated by a set of moving bars, which shed wakes across the test section inlet. Further upstream, a grid has been installed to elevate the free-stream turbulence to a level believed to be representative of multi-stage LP turbines. Extensive particle imaging velocimetry (PIV) measurements have been performed on the flat-plate boundary layer to examine the flow behaviour. In the absence of the incoming bar wakes, the grid-generated free-stream turbulence induces relatively weak Klebanoff streaks in the boundary layer which are evident as streamwise streaks of low-velocity fluid. Transition is promoted by the streaks and by the inherent inflectional (Kelvin–Helmholtz (KH)) instability of the separation bubble. In unsteady flow, the incoming bar wakes generate stronger Klebanoff streaks as they pass over the leading edge, which convect downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The region of amplified streaks convects in a similar manner to a classical turbulent spot: the leading and trailing edges travel at around 88% and 50% of the free-stream velocity, respectively. The strongest disturbances travel at around 70% of the free-stream velocity. The wakes induce a second type of disturbance as they pass over the separation bubble, in the form of short-span KH structures. Both the streaks and the KH structures contribute to the early wake-induced transition. The KH structures are similar to those observed in the simulation of separated flow transition with high free-stream turbulence by McAuliffe & Yaras (ASME J. Turbomach., vol. 132, no. 1, 2010, 011004), who observed that these structures originated from localised instabilities of the shear layer induced by Klebanoff streaks. In the current measurements, KH structures are frequently observed directly under the path of the wake. The wake-amplified Klebanoff streaks cannot affect the generation of these structures since they do not arrive at the bubble until later in the wake cycle. Rather, the KH structures arise from an interaction between the flow disturbances in the wake and localised instabilities in the shear layer, which are caused by the weak Klebanoff streaks induced by the grid turbulence. The breakdown of the KH structures to small-scale turbulence occurs a short time after the wake has passed over the bubble, and is largely driven by the arrival of the wake-amplified Klebanoff streaks from the leading edge. During this process, the re-attachment location moves rapidly upstream. The minimum length of the bubble occurs when the strongest wake-amplified Klebanoff streaks arrive from the leading edge; these structures travel at around 70% of the free-stream velocity. The bubble remains shorter than its steady-flow length until the trailing edge of the wake-amplified Klebanoff streaks, travelling at 50% of the free-stream velocity, convect past. After this time, the reattachment location moves aft on the surface as a consequence of a calmed flow region which follows behind the wake-induced turbulence.


Author(s):  
Ralph J. Volino ◽  
Lennart S. Hultgren

Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50, 000 to 300, 000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50, 000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined FSN (Free Stream Nonuniformity) distributions are introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations are present in the downstream boundary layer resulting from the interaction of the laminar wakes with the leading edge. Regions of elevated background unsteadiness appear on either side of the peak layer thickness, which share many of the characteristics of Klebanoff modes, observed at elevated Free Stream Turbulence (FST) levels. However, for the low background disturbance level of the free stream, the layer remains laminar to the end of the test section (Rx ≈ l.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to demonstrate that the deformation of the mean flow is responsible for substantial phase and amplitude distortion of Tollmien-Schlichting (TS) waves. Pseudo-flow visualization of hot-wire data shows that the breakdown of the distorted waves is more complex and occurs at a lower Reynolds number than the breakdown of the K-type secondary instability observed when the FSN is not present.


Author(s):  
Ting Wang ◽  
Matthew C. Rice

The surface roughness over a serviced turbine airfoil is usually multi-scaled with varying features that are difficult to be universally characterized. However, it was previously discovered in low freestream turbulence conditions that the height of larger roughness produces separation and vortex shedding, which trigger early transition and exert a dominant effect on flow pattern and heat transfer. The geometry of the roughness and smaller roughness scales played secondary roles. This paper extends the previous study to elevated turbulence conditions with free-stream turbulence intensity ranging from 0.2–6.0 percent. A simplified test condition on a flat plate is conducted with two discrete regions having different surface roughness. The leading edge roughness is comprised of a sandpaper strip or a single cylinder. The downstream surface is either smooth or covered with sandpaper of grit sizes ranging from 100 ∼ 40 (Ra = 37 ∼ 119 μm). Hot wire measurements are conducted in the boundary layer to study the flow structure. The results of this study verify that the height of the largest-scale roughness triggers an earlier transition even under elevated turbulence conditions and exerts a more dominant effect on flow and heat transfer than does the geometry of the roughness. Heat transfer enhancements of about 30 ∼ 40 percent over the entire test surface are observed. The vortical motion, generated by the backward facing step at the joint of two roughness regions, is believed to significantly increase momentum transport across the boundary layer and bring the elevated turbulence from the freestream towards the wall. No such long-lasting heat transfer phenomenon is observed in low FSTI cases even though vortex shedding also exists in the low turbulence cases. The heat transfer enhancement decreases, instead of increases, as the downstream roughness height increases.


2005 ◽  
Vol 128 (2) ◽  
pp. 247-257 ◽  
Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined weak Free Stream Nonuniformity (FSN) is introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations form in the boundary layer as a result of the interaction between the steady laminar wakes from the wires and the leading edge. The centerline of a region of elevated layer thickness is aligned with the centerline of the wake in the freestream and the response is shown to be remarkably sensitive to the spanwise length-scale of the wakes. The region of elevated thickness is equivalent to a long narrow low speed streak in the layer. Elevated Free Stream Turbulence (FST) levels are known to produce randomly forming arrays of long narrow low speed streaks in laminar boundary layers. Therefore the characteristics of the streaks resulting from the FSN are studied in detail in an effort to gain some insight into bypass transition that occurs at elevated FST levels. The shape factors of the profiles in the vicinity of the streak appear to be unaltered from the Blasius value, even though the magnitude of the local thickness variations are as large as 60% of that of the undisturbed layer. Regions of elevated background unsteadiness appear on either side of the streak and it is shown that they are most likely the result of small amplitude spanwise modulation of the layer thickness. The background unsteadiness shares many of the characteristics of Klebanoff modes observed at elevated FST levels. However, the layer remains laminar to the end of the test section (Rx≈1.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to examine interactions between the streak and Tollmien-Schlichting (TS) waves. The deformation of the mean flow introduced by the streak is responsible for substantial phase and amplitude distortion of the waves and the breakdown of the distorted waves is more complex and it occurs at a lower Reynolds number than the breakdown of the K-type secondary instability that is observed when the FSN is not present.


1998 ◽  
Vol 374 ◽  
pp. 91-116 ◽  
Author(s):  
IAN P. CASTRO ◽  
ELEANORA EPIK

Measurements obtained in boundary layers developing downstream of the highly turbulent, separated flow generated at the leading edge of a blunt flat plate are presented. Two cases are considered: first, when there is only very low (wind tunnel) turbulence present in the free-stream flow and, second, when roughly isotropic, homogeneous turbulence is introduced. With conditions adjusted to ensure that the separated region was of the same length in both cases, the flow around reattachment was significantly different and subsequent differences in the development rate of the two boundary layers are identified. The paper complements, but is much more extensive than, the earlier presentation of some of the basic data (Castro & Epik 1996), confirming not only that the development process is very slow, but also that it is non-monotonic. Turbulence stress levels fall below those typical of zero-pressure-gradient boundary layers and, in many ways, the boundary layer has features similar to those found in standard boundary layers perturbed by free-stream turbulence. It is argued that, at least as far as the turbulence structure is concerned, the inner layer region develops no more quickly than does the outer flow and it is the latter which essentially determines the overall rate of development of the whole flow. Some numerical computations are used to assess the extent to which current turbulence models are adequate for such flows.


Sign in / Sign up

Export Citation Format

Share Document