Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Airfoil

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
A. Samson ◽  
S. Sarkar

This paper describes the change in the transition mechanism of a separated boundary layer formed from the semicircular leading-edge of a constant thickness airfoil as the free-stream turbulence (fst) increases. Experiments are carried out in a low-speed wind tunnel for three levels of fst (Tu = 0.65%, 4.6%, and 7.7%) at two Reynolds numbers (Re) 25,000 and 55,000 (based on the leading-edge diameter). Measurements of velocity and surface pressure along with flow field visualizations are carried out using a planar particle image velocimetry (PIV). The flow undergoes separation in the vicinity of leading-edge and reattaches in the downstream forming a separation bubble. The shear layer is laminar up to 20% of separation length, and then, the perturbations are amplified in the second-half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Tu. At low fst, the primary mode of instability of the shear layer is Kelvin–Helmholtz (K-H), although the local viscous effect may not be neglected. At high fst, the mechanism of shear layer rollup is bypassed with transient growth of perturbations along with evidence of spot formation. The predominant shedding frequency when normalized with respect to the momentum thickness at separation is almost constant and shows a good agreement with the previous studies. After reattachment, the flow takes longer length to approach a canonical boundary layer.

2011 ◽  
Vol 681 ◽  
pp. 370-410 ◽  
Author(s):  
JOHN D. COULL ◽  
HOWARD P. HODSON

This paper examines the transition process in a boundary layer similar to that present over the suction surfaces of aero-engine low-pressure (LP) turbine blades. This transition process is of significant practical interest since the behaviour of this boundary layer largely determines the overall efficiency of the LP turbine. Modern ‘high-lift’ blade designs typically feature a closed laminar separation bubble on the aft portion of the suction surface. The size of this bubble and hence the inefficiency it generates is controlled by the transition between laminar and turbulent flow in the boundary layer and separated shear layer. The transition process is complicated by the inherent unsteadiness of the multi-stage machine: the wakes shed by one blade row convect through the downstream blade passages, periodically disturbing the boundary layers. As a consequence, the transition to turbulence is multi-modal by nature, being promoted by periodic and turbulent fluctuations in the free stream and the inherent instabilities of the boundary layer. Despite many studies examining the flow behaviour, the detailed physics of the unsteady transition phenomena are not yet fully understood. The boundary-layer transition process has been studied experimentally on a flat plate. The opposing test-section wall was curved to impose a streamwise pressure distribution typical of modern high-lift LP turbines over the flat plate. The presence of an upstream blade row has been simulated by a set of moving bars, which shed wakes across the test section inlet. Further upstream, a grid has been installed to elevate the free-stream turbulence to a level believed to be representative of multi-stage LP turbines. Extensive particle imaging velocimetry (PIV) measurements have been performed on the flat-plate boundary layer to examine the flow behaviour. In the absence of the incoming bar wakes, the grid-generated free-stream turbulence induces relatively weak Klebanoff streaks in the boundary layer which are evident as streamwise streaks of low-velocity fluid. Transition is promoted by the streaks and by the inherent inflectional (Kelvin–Helmholtz (KH)) instability of the separation bubble. In unsteady flow, the incoming bar wakes generate stronger Klebanoff streaks as they pass over the leading edge, which convect downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The region of amplified streaks convects in a similar manner to a classical turbulent spot: the leading and trailing edges travel at around 88% and 50% of the free-stream velocity, respectively. The strongest disturbances travel at around 70% of the free-stream velocity. The wakes induce a second type of disturbance as they pass over the separation bubble, in the form of short-span KH structures. Both the streaks and the KH structures contribute to the early wake-induced transition. The KH structures are similar to those observed in the simulation of separated flow transition with high free-stream turbulence by McAuliffe & Yaras (ASME J. Turbomach., vol. 132, no. 1, 2010, 011004), who observed that these structures originated from localised instabilities of the shear layer induced by Klebanoff streaks. In the current measurements, KH structures are frequently observed directly under the path of the wake. The wake-amplified Klebanoff streaks cannot affect the generation of these structures since they do not arrive at the bubble until later in the wake cycle. Rather, the KH structures arise from an interaction between the flow disturbances in the wake and localised instabilities in the shear layer, which are caused by the weak Klebanoff streaks induced by the grid turbulence. The breakdown of the KH structures to small-scale turbulence occurs a short time after the wake has passed over the bubble, and is largely driven by the arrival of the wake-amplified Klebanoff streaks from the leading edge. During this process, the re-attachment location moves rapidly upstream. The minimum length of the bubble occurs when the strongest wake-amplified Klebanoff streaks arrive from the leading edge; these structures travel at around 70% of the free-stream velocity. The bubble remains shorter than its steady-flow length until the trailing edge of the wake-amplified Klebanoff streaks, travelling at 50% of the free-stream velocity, convect past. After this time, the reattachment location moves aft on the surface as a consequence of a calmed flow region which follows behind the wake-induced turbulence.


1995 ◽  
Author(s):  
Anestis I. Kalfas ◽  
Robin L. Elder

This paper considers the effects of free stream turbulence intensity on intermittent boundary layer flows related to turbomachinery. The present experimental investigation has been undertaken under free stream flow conditions dominated by grid generated turbulence and Reynolds numbers appropriate for turbomachinery applications. Unseparated flow transition in the boundary layer has been considered using a flat plate with the C4 leading edge which has been designed to avoid laminar separation. This configuration provided the opportunity to study the effect of a realistic turbomachinery leading edge shape on transition. Boundary layer type hot-wire probes have been used in order to acquire detailed information about the effect of the free stream conditions and the leading edge configuration on the structure of the boundary layer. Furthermore, information about the intermittency distribution throughout the boundary layer has been obtained using statistical analysis of the velocity record of the flow field.


1987 ◽  
Vol 109 (1) ◽  
pp. 10-15 ◽  
Author(s):  
G. J. VanFossen ◽  
R. J. Simoneau

A study has been conducted at the NASA Lewis Research Center to investigate the mechanism that causes free-stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work was conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size was scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that, at the Reynolds numbers tested, the boundary layer remained laminar in character even in the presence of free-stream turbulence. If roughness was added the boundary layer became transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot-wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization were combined to show that, in the wake of an array of parallel wires, heat transfer was a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity was toward the cylinder surface.


Author(s):  
L Tain ◽  
N. A. Cumpsty

The flow around the leading edge of a compressor blade is interesting and important because there is such a strong interaction between the viscous boundary layer flow and the inviscid flow around it. As the velocity of the inviscid flow just outside the boundary layer is increased from subsonic to supersonic, the type of viscous-inviscid interaction changes; this has important effects on the boundary layer downstream and thus on the performance of the aerofoil or blade. An investigation has been undertaken of the flow in the immediate vicinity of a simulated compressor blade leading edge for a range of inlet Mach numbers from 0.6 to 0.95. The two-dimensional aerofoil used has a circular leading edge on the front of a flat aerofoil. The incidence, Reynolds number and level of free-stream turbulence have been varied. Measurements include the static pressure around the leading edge and downstream and the boundary layer profile far enough downstream for the leading edge bubble to have reattached. Schlieren pictures were also obtained. The flow around the leading edge becomes supersonic when the inlet Mach number is 0.7 for the zero-incidence case; for an inlet Mach number of 0.95 the peak Mach number was approximately 1.7. The pattern of flow around the leading edge alters as the Mach number is increased, and at the highest Mach number tested here the laminar separation bubble is removed. Positive incidence, raised free-stream turbulence or increased Reynolds number at intermediate inlet Mach numbers tended to promote flow patterns similar to those seen at the highest inlet Mach number. Both increased free-stream turbulence and increased Reynolds number, for the same Mach number and incidence, produced thinner shear layers including a thinner boundary layer well downstream. The measurements were supported by calculations using the MSES code (the single aerofoil version of the MISES code); the calculations were helpful in interpreting the measured results and were demonstrated to be accurate enough to be used for design purposes.


Author(s):  
Birinchi K. Hazarika ◽  
Charles Hirsch

An experimental investigation of a separation bubble on a C4 leading edge plate at an incidence in a low turbulence free stream at six Reynolds numbers, is reported. The long separation bubble, formed at the leading edge, has a short laminar and transitional zone followed by a long turbulent zone. The increase in Reynolds number reduced the laminar and transitional part significantly, but its effect on the length of the separation bubble is marginal till the transition starts at the separation point. The peak intermittency factor, which occurs at the centre of the shear layer, follows the universal intermittency distribution curve. The spot production rate for the separated flows are several orders of magnitude higher than that for the attached boundary layers. The transition process is initiated by the amplification of the instability waves in the shear layer similar to the natural mode of transition. At high Reynolds numbers, the onset of transition is likely to take place at the separation point. At lower chord Reynolds numbers, the separation to onset Reynolds number and the spot production rate parameter are functions of the separation momentum thickness Reynolds number. The free stream turbulence intensity has a strong influence on the spot production rate. New correlations for transition in the leading edge separation bubbles are proposed based on all the available intermittency measurements in the leading edge separation bubbles.


Author(s):  
G. James VanFossen ◽  
Robert J. Simoneau

A study is being conducted at the NASA Lewis Research Center to investigate the mechanism that causes free stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work is being conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size is scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13 000 to 177 000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that the boundary layer remains laminar in character even in the presence of free stream turbulence at the Reynolds numbers tested. If roughness is added the boundary layer becomes transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Circumferential traverses of a hot wire probe very near the surface of the cylinder have shown the fluctuating component of velocity changes in character depending on free stream turbulence and Reynolds number. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization have been combined to show that, in the wake of an array of parallel wires, heat transfer is a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity is toward the cylinder surface.


1997 ◽  
Vol 337 ◽  
pp. 1-24 ◽  
Author(s):  
P. J. SAATHOFF ◽  
W. H. MELBOURNE

Wind-tunnel experiments were conducted to investigate the cause of large pressure fluctuations near leading edges of sharp-edged bluff bodies. Measurements obtained with a blunt flat plate showed that very low pressures occur in a narrow region located approximately 0.25XR from the leading edge, where XR defines the distance from the leading edge to the mean reattachment location. This phenomenon occurs in the undisturbed flow as well as turbulent flow, although the magnitude of peak pressure fluctuations increases with both turbulence intensity, σu/u, and turbulence scale, LX.Flow visualization experiments conducted with a high-speed cine-camera reveal the process that causes large pressure fluctuations in separation bubbles. This process is initiated when a perturbation in the approaching flow causes a roll-up of the separated shear layer, producing a strong vortex near the surface. Conditional sampling of pressure data was used to determine the spanwise length of the vortex. A significant increase in the spanwise correlation of pressure fluctuations occurs when the shear layer rolls up. Coherence measurements indicate that the spanwise length of vortices in the separation bubble is not directly related to longitudinal velocity fluctuations in the free-stream.


Author(s):  
A Samson ◽  
S Sarkar

This paper describes the dynamics of a laminar separation bubble formed on the semi-circular leading edge of constant thickness aerofoil model. Detailed experimental studies are carried out in a low-speed wind tunnel, where surface pressure and time-averaged velocity in the separated region and as well as in the downstream are presented along with flow field visualisations through PIV for various Reynolds numbers ranging from 25,000 to 75,000 (based on the leading edge diameter). The results illustrate that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Reynolds number and plays an important role in outer layer activities. Further, the transition of a separated shear layer is studied through variation of intermittency factor and comparing with existing correlations available in the literature for attached flow and as well as separated flow. Transition of the separated shear layer occurs through formation of K-H rolls, where the intermittency following spot propagation theory appears valid. The predominant shedding frequency when normalised with respect to the momentum thickness at separation remains almost constant with change in Reynolds number. The relaxation is slow after reattachment and the flow takes about five bubble lengths to approach a canonical layer.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document