Thermal elastic-plastic stress analysis of an anisotropic structure

Author(s):  
X Wang ◽  
M-Ch Dong ◽  
G Lu

In this paper, a polynomial stress function is utilized to satisfy both the governing differential equation for an anisotropic plane stress problem and the corresponding boundary conditions for plastic deformation. A theoretical solution for the thermal elastic-plastic problem of composite structure is obtained by means of the Tsai-Hill strength theory of anisotropic material. The composite structure is composed of a steel fibre-reinforced aluminium metal-matrix with a linear hardening material property. On the other hand, an elastic-plastic finite element analysis for the same problem is also carried out by using ABAQUS. The theoretical solution is in good agreement with the results from the finite element analysis. Finally, some examples are given and the corresponding results are discussed.

2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.


2011 ◽  
Vol 299-300 ◽  
pp. 1161-1166
Author(s):  
Wei Min Li

This paper focuses on discussing the application of FEA theory and method in calculation of composite structure strength between engine cylinder head and head gasket. Based on finite element analysis software, the integrated system of 3D CAD/CAE application software was developed for the finite-element analysis of the composite structure consisting of engine cylinder head and head gasket. By using the software system, several jobs, such as working condition analysis from preloading to outburst operation, structural analysis and steady-state thermal analysis, and thermo-structure coupling analysis, were carried out. The results studied in this paper provide a new idea and method for the finite element analysis of composite structure between engine cylinder head and head gasket.


2013 ◽  
Vol 351-352 ◽  
pp. 854-859 ◽  
Author(s):  
Fan Wang ◽  
Zhi Feng Luo ◽  
Sheng Hao Mo

The article introduces the application of the large universally used finite element analysis software ABAQUS in elastic-plastic analysis of the cast-steel joints in building structure. Using the cast-steel joint of a large reticulated shell structure in Shenzhen as an example, the article explains how to import the joint model into ABAQUS and start the finite element analysis, and finally get the elastic-plastic analysis results, thus provide the reference for engineering design, analysis and optimize design of cast-steel joints.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2014 ◽  
Vol 893 ◽  
pp. 314-319
Author(s):  
P. Gurusamy ◽  
S. Balasivanandha Prabu ◽  
R. Paskaramoorthy

This paper discusses the influence of die temperature on the solidification behaviour of A356/SiCp composites fabricated by squeeze casting method. Information on the solidification studies of squeeze cast composites is somewhat scarce. Experiments were carried out by varying the die temperatures for cylindrical shaped composite castings K-type thermocouples were interfaced to the die and the temperature-time history was recorded to construct the cooling curves. The cooling curves are also predicted from the finite element analysis (FEA) software ANSYS 13. The experimental and predicted cooling curves are not in good agreement. In addition to, the experimental and theoretical solidification times are studied. It was understood that the increase in the die temperature decreases the cooling rate.


Author(s):  
Bing Li ◽  
Dave McNeish ◽  
Seyun Eom ◽  
D. K. Vijay ◽  
Si-tsai Lin ◽  
...  

In one CANDU reactor unit in Ontario, the west end fitting is designed to connect to the end shield via a stop collar. The outboard end of the stop collar is welded to an attachment ring which shrink-fits on the end fitting body. The east side end fitting is supported by inboard and outboard journal rings resting on their respective bearing sleeves which allow the ‘free’ axial movement of the channel. In support of some maintenance activities, the west end fitting is required to be jacked to get certain clearance for accommodating the operating tools. The previous elastic calculation got the jacking limit of 0.35″ while did not provide enough clearance for tooling. In this paper, an elastic-plastic finite element analysis following ASME B&PV code Section III, Division 1, Subsection NB is performed to increase the jacking limit. The finite element analysis is carried out using ANSYS and validated by an ABAQUS model. In the elastic-plastic finite element analysis, the following effects are considered: strain hardening of stop collar material, stress concentration in stop collar weld, notch effect on stress concentration and fatigue in stop collar. Cyclic jacking loads as displacement controlled loading are applied in the analysis. Considering the time to the end of unit life, the maximum anticipated end fitting jacking cycles are 8. The higher jacking limit is achieved with an acceptable plastic deformation and fatigue damage at the stop collar, which is the weakest part during the end fitting jacking. The results show that the end fitting can be jacked at west side End-face with 1.17″ for 1–3 cycles, 1.15″ for 4 cycles, 1.03″ for 5 cycles, 0.95″ for 6 cycles, 0.85″ for 7 cycles and 0.80″ for 8 cycles. The jacking limits achieved in this paper provide enough clearance for the required maintenance operations.


1993 ◽  
Vol 115 (1) ◽  
pp. 102-109 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The process of square-cup drawing is modeled employing a simplified finite element analysis technique. In order to make the algorithm computationally efficient, the deformation (total strain) theory of plasticity is adopted. The solution scheme is comprised of specifying a mesh of two-dimensional finite elements with membrane properties over the deformed configuration of the final part geometry. The initial positions of these elements are then computed by minimization of the potential energy, and therefore the strain distributions are determined. In order to verify predictions made by the finite element analysis method, a drawing apparatus is built and various drawing experiments are carried out. A number of circular and square cups are drawn and strain distributions measured. It is observed that there is generally a good agreement between computed and measured results for both axisymmetric and nonaxisymmetric cases.


Sign in / Sign up

Export Citation Format

Share Document