Mechanical characterization of materials for bulk forming using a drop weight testing machine

Author(s):  
C M A Silva ◽  
P A R Rosa ◽  
P A F Martins

The main limitation of mechanical testing equipments is nowadays centred in the characterization of materials at medium loading rates. This is particularly important in bulk forming because strain rate can easily reach values within the aforesaid range. The aim of this article is twofold: (a) to present the development of a low-cost, flexible drop weight testing equipment that can easily and effectively replicate the kinematic behaviour of presses and hammers and (b) to provide a new level of understanding about the mechanical characterization of materials for bulk forming at medium rates of loading. Special emphasis is placed on the adequacy of test operating conditions to the functional characteristics of the presses and hammers where bulk forming takes place and to its influence on the flow stress. This is needed because non-proportional loading paths during bulk forming are found to have significant influence on material response in terms of flow stress. The quality of the flow curves that were experimentally determined is evaluated through its implementation in a finite-element computer program and assessment is performed by means of axisymmetric upset compression with friction. Results show that mechanical characterization of materials under test operating conditions that are similar to real bulk forming conditions is capable of meeting the increasing demand of accurate and reliable flow stress data for the benefit of those who apply numerical modelling of process design in daily practice.

2014 ◽  
Vol 11 (03) ◽  
pp. 1343002 ◽  
Author(s):  
GIULIO MAIER ◽  
VLADIMIR BULJAK ◽  
TOMASZ GARBOWSKI ◽  
GIUSEPPE COCCHETTI ◽  
GIORGIO NOVATI

A survey is presented herein of some recent research contributions to the methodology of inverse structural analysis based on statical tests for diagnosis of possibly damaged structures and for mechanical characterization of materials in diverse industrial environments. The following issues are briefly considered: identifications of parameters in material models and of residual stresses on the basis of indentation experiments; mechanical characterization of free-foils and laminates by cruciform and compression tests and digital image correlation measurements; diagnosis, both superficially and in depth, of concrete dams, possibly affected by alkali-silica-reaction or otherwise damaged.


2019 ◽  
Vol 9 (18) ◽  
pp. 3928 ◽  
Author(s):  
Chiara Bedon

Load-bearing laminated glass (LG) elements take the form of simple members in buildings (i.e., columns, beams, and plates) or realize stand-alone assemblies, where glass and other traditional constructional materials can interact. Among several relevant aspects, the dynamic response of LG structures requires dedicated methods of analysis, towards the fulfilment of safe design purposes. A combination of multiple aspects must be taken into account for dynamic calculations of even simple LG elements when compared to static conditions, first of all the sensitivity of common interlayers to the imposed vibration frequency. The challenge is even more complex for the vibration serviceability assessment of in-service LG structures, where the degradation of materials and possible delamination effects could manifest, hence resulting in structural performances that can markedly differ from early-design conditions. Major uncertainties can be associated to the actual mechanical characterization of materials in use (especially the viscoelastic interlayers), as well as the contribution of restraints (as compared to ideal boundaries) and the possible degradation of the bonding layers (i.e., delaminations). All of these aspects are examined in the paper, with the support of extended analytical calculations, on-site experimental measurements, and parametric Finite Element (FE) numerical analyses. When compared to literature efforts accounting for ideal boundaries only, an analytical formulation is proposed to include the effects of flexible restraints in the dynamic performance of general (double) LG beams. Special care is also spent for the presence of possible delaminations, including size and position effects. In the latter case, existing formulations for composite laminates are preliminarily adapted to LG beams. Their reliability and accuracy is assessed with the support of test predictions and parametric FE simulations.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2841 ◽  
Author(s):  
Mauricio Torres-Arellano ◽  
Victoria Renteria-Rodríguez ◽  
Edgar Franco-Urquiza

This work deals with the manufacture and mechanical characterization of natural-fiber-reinforced biobased epoxy resins. Biolaminates are attractive to various industries because they are low-density, biodegradable, and lightweight materials. Natural fibers such as Ixtle, Henequen, and Jute were used as reinforcing fabrics for two biobased epoxy resins from Sicomin®. The manufacture of the biolaminates was carried out through the vacuum-assisted resin infusion process. The mechanical characterization revealed the Jute biolaminates present the highest stiffness and strength, whereas the Henequen biolaminates show high strain values. The rigid and semirigid biolaminates obtained in this work could drive new applications targeting industries that require lightweight and low-cost sustainable composites.


2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


2009 ◽  
Vol 20 (11) ◽  
pp. 115701 ◽  
Author(s):  
Bo Song ◽  
Kevin Connelly ◽  
John Korellis ◽  
Wei-Yang Lu ◽  
Bonnie R Antoun

2015 ◽  
Vol 2 (1) ◽  
pp. 106-112 ◽  
Author(s):  
D. Thuau ◽  
C. Ayela ◽  
E. Lemaire ◽  
S. Heinrich ◽  
P. Poulin ◽  
...  

Rapid, low-cost and accurate characterization of the viscoelastic properties of organic materials using piezoresistive MEMS resonators.


Sign in / Sign up

Export Citation Format

Share Document