Synthesis and Mechanical Characterization of Sisal-Epoxy and Hybrid-Epoxy Composites in Comparison with Conventional Fiber Glass-Epoxy Composite

2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2841 ◽  
Author(s):  
Mauricio Torres-Arellano ◽  
Victoria Renteria-Rodríguez ◽  
Edgar Franco-Urquiza

This work deals with the manufacture and mechanical characterization of natural-fiber-reinforced biobased epoxy resins. Biolaminates are attractive to various industries because they are low-density, biodegradable, and lightweight materials. Natural fibers such as Ixtle, Henequen, and Jute were used as reinforcing fabrics for two biobased epoxy resins from Sicomin®. The manufacture of the biolaminates was carried out through the vacuum-assisted resin infusion process. The mechanical characterization revealed the Jute biolaminates present the highest stiffness and strength, whereas the Henequen biolaminates show high strain values. The rigid and semirigid biolaminates obtained in this work could drive new applications targeting industries that require lightweight and low-cost sustainable composites.


2012 ◽  
Vol 549 ◽  
pp. 344-348
Author(s):  
Hui Juan Xiu ◽  
Qing Han ◽  
Ru Zhang ◽  
Li Hui Liu

Natural fibers possess many good characteristics, such as abundance, low cost, renewable, biodegradability and photo-degradability that made it a hot spot in exploiting current resources. Chemical modification is a new way to make efficient use of forestry and farming waste natural fiber resources. In this work, softwood fibers were modified by cyanoethylation with acrylonitrile. The influence of acrylonitrile dosage, reaction time, reaction temperature and the time immersed in sodium hydroxide solution with KSCN saturated on cyanoethylation were investigated. Fibers chemical structure and surface morphology before and after modification were characterized by FTIR and scanning electron microscope separately.


2015 ◽  
Vol 660 ◽  
pp. 120-124
Author(s):  
Suriyati Mohamed Ansari ◽  
Che Mohd Ruzaidi ◽  
Kamarudin Husin

Even though synthetic fiber give higher of strength in composites and is low cost material, the biggest problems faced when using this material is that it does not degrade or compose in the environment. The usage of natural fibers in industrial application become the main concern because it offer both cost savings and a reduction in density when compared to existing fibers such as glass fibers and etc. This make the needs for renewable fiber reinforced composites are increasing and have never been as prevalent as it currently is. Although the strength of natural fibers is not great as glass, the specific properties are comparable. Continuous yarn fibers are required to increase the strength for engineering applications and filament winding is a method to produce aligned technical composites which have high fiber content. This paper presents a review on composites made of natural fiber and different resin that been processed via filament winding technique.


2014 ◽  
Vol 893 ◽  
pp. 271-274 ◽  
Author(s):  
B. Vijaya Ramnath ◽  
C. Vinodh Krishna ◽  
S. Karthik ◽  
K. Saravanan ◽  
V.M. Manickavasagam ◽  
...  

The interest in natural fibers has been rising in the past decade due to low cost and abundant availability. Though the composites made from artificial fibers possess superior properties when compared to natural fiber reinforced composites, their high cost makes it unviable in day-to-day applications. This paper is an evaluation of a pineapple fiber reinforced composite using epoxy resin as matrix. Glass fibers are provided as the outer layers to improve the surface finish and strength. Using hand lay-up method, fibers of pineapple are assembled in alternate layers of vertical and horizontal orientation. The flexural properties of the composite are determined. Three samples are tested and it is seen that there is no appreciable variation in the properties. The average break load is 1.29 KN and the deflection is 5.533 mm. The flexural strength is calculated as 78.63MPa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


2018 ◽  
Vol 1148 ◽  
pp. 61-71 ◽  
Author(s):  
V. Joshua Jaya Prasad ◽  
Puli Suresh Kumar

Recently, there has been an exponential growth in research and innovation in the natural fiber composites (NFC) due to their diversified applications in the field of engineering. Biodegradability, light weight, formability and availability at low cost are the attractive merits of the natural fibers. Mechanical, Thermal and Machinabilty properties of Natural fiber composites have their own advantage and adoptability in the field of automobile, power plants, aeronautical, defense and naval applications. This review aims to provide an overview of the comparison of differ types of Natural fiber composites, factors that affect the mechanical, thermal and machinabilty of NFCs and their engineering applications.


Sign in / Sign up

Export Citation Format

Share Document