Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic—metal plates using finite element method

Author(s):  
M Talha ◽  
B N Singh

This paper deals with the thermomechanical-induced vibration characteristics of shear deformable functionally graded material (FGM) plates. Theoretical formulations are based on higher-order shear deformation theory with a significant improvement in the transverse displacement using finite-element method. The mechanical properties of the plate are assumed to be temperature-dependent and graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The temperature field is ascertained to be a uniform distribution over the plate surface and varied in the thickness direction only. The fundamental equations for FGM plates are derived using variational approach by considering traction-free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite-element with 13 degrees of freedom (DOF) per node have been used to accomplish the results. Convergence and comparison studies have been performed for square plates to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index, and temperature rise with different boundary conditions. The results reveal that the temperature field and the gradient in the material properties have significant effect on the vibration characteristics of the FGM plates.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document