Simultaneous localization and mapping: swarm robot mutual localization and sonar arc bidirectional carving mapping

Author(s):  
S Xu ◽  
Z Ji ◽  
D T Pham ◽  
F Yu

This work primarily aims to study robot swarm global mapping in a static indoor environment. Due to the prerequisite estimation of the robots' own poses, it is upgraded to a simultaneous localization and mapping (SLAM) problem. Five techniques are proposed to solve the SLAM problem, including the extended Kalman filter (EKF)-based mutual localization, sonar arc bidirectional carving mapping, grid-oriented correlation, working robot group substitution, and termination rule. The EKF mutual localization algorithm updates the pose estimates of not only the current robot, but also the landmark-functioned robots. The arc-carving mapping algorithm is to increase the azimuth resolution of sonar readings by using their freespace regions to shrink the possible regions. It is further improved in both accuracy and efficiency by the creative ideas of bidirectional carving, grid-orientedly correlated-arc carving, working robot group substitution, and termination rule. Software simulation and hardware experiment have verified the feasibility of the proposed SLAM philosophy when implemented in a typical medium-cluttered office by a team of three robots. Besides the combined effect, individual algorithm components have also been investigated.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4254 ◽  
Author(s):  
Le Jiang ◽  
Pengcheng Zhao ◽  
Wei Dong ◽  
Jiayuan Li ◽  
Mingyao Ai ◽  
...  

Aiming at the problem of how to enable the mobile robot to navigate and traverse efficiently and safely in the unknown indoor environment and map the environment, an eight-direction scanning detection (eDSD) algorithm is proposed as a new pathfinding algorithm. Firstly, we use a laser-based SLAM (Simultaneous Localization and Mapping) algorithm to perform simultaneous localization and mapping to acquire the environment information around the robot. Then, according to the proposed algorithm, the 8 certain areas around the 8 directions which are developed from the robot’s center point are analyzed in order to calculate the probabilistic path vector of each area. Considering the requirements of efficient traverse and obstacle avoidance in practical applications, the proposal can find the optimal local path in a short time. In addition to local pathfinding, the global pathfinding is also introduced for unknown environments of large-scale and complex structures to reduce the repeated traverse. The field experiments in three typical indoor environments demonstrate that deviation of the planned path from the ideal path can be kept to a low level in terms of the path length and total time consumption. It is confirmed that the proposed algorithm is highly adaptable and practical in various indoor environments.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3228 ◽  
Author(s):  
Yuwei Chen ◽  
Jian Tang ◽  
Changhui Jiang ◽  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
...  

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can’t meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.


2012 ◽  
Vol 22 ◽  
pp. 106-112
Author(s):  
Alfredo Toriz ◽  
Abraham Sánchez ◽  
Maria A. Osorio

This paper describes a simultaneous planning localization and mapping (SPLAM) methodology focussed on the global localization problem, where the robot explores the environment efficiently and also considers the requisites of the simultaneous localization and mapping algorithm. The method is based on the randomized incremental generation of a data structure called Sensor-based Random Tree, which represents a roadmap of the explored area with an associated safe region. A continuous localization procedure based on B-Splines features of the safe region is integrated in the scheme.


Sign in / Sign up

Export Citation Format

Share Document