Automotive Damper Model for Use in Multi-Body Dynamic Simulations

Author(s):  
P J Allen ◽  
A Hameed ◽  
H Goyder
2021 ◽  
pp. 107754632199918
Author(s):  
Lei Xiao ◽  
Ke Wang ◽  
Sheng Zhou ◽  
Sai Ma

For manually driven rubber trams to track, virtual tracks can easily cause driver fatigue. Therefore, based on visual navigation, an automatic steering and trajectory following method are proposed. First, the vehicle kinematic and dynamic model of the Delight Tram is proposed. Then, the automatic steering and trajectory following methods are introduced, which are based on model prediction control and Ackermann steering theory, respectively. Finally, the effectiveness of the proposed methods has been evaluated via both multi-body dynamic simulations and road tests under various working conditions. The results show that the vehicle has excellent steering and trajectory following ability whether in a transient phase or a steady-state circumference. Furthermore, the steering system can stabilize the vehicle in the whole range of design speed, with a smaller computational cost.


Author(s):  
Wael Saab ◽  
Pinhas Ben-Tzvi

This paper presents the design and analysis of a reduced degree-of-freedom Robotic Modular Leg (RML) mechanism used to construct a quadruped robot. This mechanism enables the robot to perform forward and steering locomotion with fewer actuators than conventional quadruped robots. The RML is composed of a double four-bar mechanism that maintains foot orientation parallel to the base and decouples actuation for simplified control, reduced weight and lower cost of the overall robotic system. A passive suspension system in the foot enables a stable four-point contact support polygon on uneven terrain. Foot trajectories are generated and synchronized using a trot and modified creeping gait to maintain a constant robot body height, horizontal body orientation, and provide the ability to move forward and steer. The locomotion principle and performance of the mechanism are analyzed using multi-body dynamic simulations of a virtual quadruped and experimental results of an integrated RML prototype.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Qiang Ruan ◽  
Jianxu Wu ◽  
Yan-an Yao

AbstractThe paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting. With only 6 degrees of freedom, the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain. The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes, which enhances the obstacle surmounting capability. The pitch adjustment in leg unit requires as few independent adjusting actuators as possible. Based on the kinematic analysis of the mechanical leg, the biped and quadruped leg units with adjustive pitch are analyzed and compared. The configuration of the robot is designed to obtain a compact structure and pragmatic performance. The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented. Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out. The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities.


2021 ◽  
Vol 224 ◽  
pp. 108729
Author(s):  
Shujie Zhao ◽  
Xun Meng ◽  
Huajun Li ◽  
Dejiang Li ◽  
Qiang Fu

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Yuliang Li ◽  
Chong Tang

In order to conveniently analyze the dynamic performance of tracked vehicles, mathematic models are established based on the actual structure of vehicles and terrain mechanics when they are moving on the soft random terrain. A discrete method is adopted to solve the coupled equations to calculate the acceleration of the vehicle’s mass center and tractive force of driving sprocket. Computation results output by the model presented in this paper are compared with results given by the model, which has the same parameters, built in the multi-body dynamic software. It shows that the steady state calculation results are basically consistent, while the model presented in this paper is more convenient to be used in the optimization of structure parameters of tracked vehicles.


2012 ◽  
Vol 51 ◽  
pp. 1-15 ◽  
Author(s):  
L. Sun ◽  
R. Eatock Taylor ◽  
Y.S. Choo

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1489
Author(s):  
Yongbo Guo ◽  
Fansheng Wang

Based on the rigid finite element method and multibody dynamics, a discrete model of a flexible conveyor belt considering the material viscoelasticity is established. RFE (rigid finite element) and SDE (spring damping element) are used to describe the rigidity and flexibility of a conveyor belt. The dynamic differential equations of the RFE are derived by using Lagrange’s equation of the second kind of the non-conservative system. The generalized elastic potential capacity and generalized dissipation force of the SDE are considered. The forward recursive formula is used to construct the conveyor belt model. The validity of dynamic equations of conveyor belt is verified by field test. The starting mode of the conveyor is simulated by the model.


Sign in / Sign up

Export Citation Format

Share Document