Computational fluid dynamics simulation of in-cylinder flows in a motored homogeneous charge compression ignition engine cylinder with variable negative valve overlapping

Author(s):  
A-F M Mahrous ◽  
M L Wyszynski ◽  
T Wilson ◽  
H-M Xu

In-cylinder air motion is one of the most important factors that control the degree of mixture preparation and thus is fundamental to improvements in the combustion process and overall engine performance. The major aim of this paper is to elucidate, through a predictive study, the main features of in-cylinder flow fields in a motored homogeneous charge compression ignition (HCCI) engine cylinder with variable negative valve overlapping (NVO). A commercial finite-volume computational fluid dynamics (CFD) package was used in the programme of simulation. The computational model was validated through a qualitative comparison between CFD results and the available experimental data. Thus one of the main developments presented in this study is the investigation of the intake process of the HCCI engine with various valve strategies, and it is perhaps the first time (to the current authors' best knowledge) that a direct comparison has been made of the results obtained in the same HCCI NVO motored engine using modelling and experimental approaches. The comparison illustrated a fair agreement between both sets of results, with some differences. A parametric predictive study of the effects of variable valve timings on the in-cylinder air motion has then been carried out. Three different sets of valve timings have been applied to the intake and exhaust valves to generate NVO of 70, 90, and 110 degrees of crank angle (°CA). The NVO was controlled by adjusting the times of exhaust valves closing (EVC) and intake valves opening (IVO) while keeping the times of exhaust valves opening (EVO) and intake valves closing (IVC) unchanged. The predicted results show a noticeable modification of the strength and the global direction of the in-cylinder charge motion as a result of increasing the magnitude of NVO. Modifications of in-cylinder swirl and tumble motions obtained by applying higher degrees of NVO are expected to have a considerable effect on the air-fuel mixture preparation process as well as the actual in-cylinder conditions at the end of the compression stroke.

2018 ◽  
Vol 7 (4.24) ◽  
pp. 157 ◽  
Author(s):  
P Moulali ◽  
T H Prasad ◽  
B D Prasad

In this paper the emission characteristics and performance of various bio diesel fuels (Tyre pyrolysis oil (TPO), Micro algae oil and Pig animal fat oil) were experimented. A single cylinder, water cooled diesel engine was modified in to homogeneous charge compression ignition engine (HCCI) with adopted port fuel injection (PFI) technique. The effects of air fuel ratio, intake temperature, injection pressure and EGR rate exhaust emissions were explained in a broad manner. The analysis of the exhaust emissions are integrated to oxides of Nitrogen (NOx), Carbon Monoxide (CO), unburned hydro carbons (UHC), smoke and soot. The performance analysis was also included on specific fuel consumption and break thermal efficiency. The basic requirements for HCCI engine is the homogeneous mixture preparation of air and fuel. This mixture formation was done by adopting port fuel injection technique and external devices were also used for bio diesel vaporization and mixture preparation. The combustion processes were measured with different EGR system.  The experimental results of different bio diesel fuels with HCCI engine mode were recorded and evaluated. A small increase in CO and HC emissions were observed with increasing bio diesel content due to slow evaporation rate of bio diesel. A significant reduction in NOx emission was also observed with respect to difference in bio diesel blends. Micro algae oil was found more stable compared with other bio diesel fuels due to the property of fuel vaporization and low heat releasing.


2016 ◽  
Vol 18 (7) ◽  
pp. 657-676 ◽  
Author(s):  
Prasad S Shingne ◽  
Robert J Middleton ◽  
Dennis N Assanis ◽  
Claus Borgnakke ◽  
Jason B Martz

This two-part article presents a model for boosted and moderately stratified homogeneous charge compression ignition combustion for use in thermodynamic engine cycle simulations. The model consists of two components: one an ignition model for the prediction of auto-ignition onset and the other an empirical combustion rate model. This article focuses on the development and validation of the homogeneous charge compression ignition model for use under a broad range of operating conditions. Using computational fluid dynamics simulations of the negative valve overlap valve events typical of homogeneous charge compression ignition operation, it is shown that there is no noticeable reaction progress from low-temperature heat release, and that ignition is within the high-temperature regime ( T > 1000 K), starting within the highest temperature cells of the computational fluid dynamics domain. Additional parametric sweeps from the computational fluid dynamics simulations, including sweeps of speed, load, intake manifold pressures and temperature, dilution level and valve and direct injection timings, showed that the assumption of a homogeneous charge (equivalence ratio and residuals) is appropriate for ignition modelling under the conditions studied, considering the strong sensitivity of ignition timing to temperature and its weak compositional dependence. Use of the adiabatic core temperature predicted from the adiabatic core model resulted in temperatures within ±1% of the peak temperatures of the computational fluid dynamics domain near the time of ignition. Thus, the adiabatic core temperature can be used within an auto-ignition integral as a simple and effective method for estimating the onset of homogeneous charge compression ignition auto-ignition. The ignition model is then validated with an experimental 92.6 anti-knock index gasoline-fuelled homogeneous charge compression ignition dataset consisting of 290 data points covering a wide range of operating conditions. The tuned ignition model predictions of [Formula: see text] have a root mean square error of 1.7° crank angle and R2 = 0.63 compared to the experiments.


2008 ◽  
Vol 9 (5) ◽  
pp. 399-408 ◽  
Author(s):  
T Shudo

A homogeneous charge compression ignition (HCCI) engine system fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG), both produced from methanol by onboard reformers using exhaust heat, has been proposed in previous research. Adjusting the proportions of DME and MRG with different ignition properties effectively controlled the ignition timing and load in HCCI combustion. The use of the single liquid fuel, methanol, also eliminates the inconvenience of carrying two fuels while maintaining the effective ignition control effect. Because reactions producing DME and MRG from methanol are endothermic, a part of the exhaust gas heat energy can be recovered during the fuel reforming. Methanol can be reformed into various compositions of hydrogen, carbon monoxide, and carbon dioxide. The present paper aims to establish the optimum MRG composition for the system in terms of ignition control and overall efficiency. The results show that an increased hydrogen fraction in MRG retards the onset of high-temperature oxidation and permits operation with higher equivalence ratios. However, the MRG composition affects the engine efficiency only a little, and the MRG produced by the thermal decomposition having the best waste-heat recovery capacity brings the highest overall thermal efficiency in the HCCI engine system fuelled with DME and MRG.


Sign in / Sign up

Export Citation Format

Share Document