The influence of phospholipid concentration in protein-containing lubricants on the wear of ultra-high molecular weight polyethylene in artificial hip joints

Author(s):  
J Bell ◽  
J L Tipper ◽  
E Ingham ◽  
M H Stone ◽  
J Fisher

There is considerable interest in the wear of polyethylene and the resulting wear-debrisinduced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115mm3/106 cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/106 cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.

Author(s):  
S Williams ◽  
M Butterfield ◽  
T Stewart ◽  
E Ingham ◽  
M Stone ◽  
...  

Wear of polyethylene and the resulting wear debris-induced osteolysis remains a major cause of long-term failure in artificial hip joints. There is interest in understanding engineering and clinical conditions that influence wear rates. Fluoroscopic studies have shown separation of the head and the cup during the swing phase of walking due to joint laxity. In ceramic-on-ceramic hips, joint laxity and microseparation, which leads to contact of the head on the superior rim of the cup, has led to localized damage and increased wear in vivo and in vitro. The aim of this study was to investigate the influence of joint laxity and microseparation on the wear of ceramic on polyethylene artificial hip joints in an in vitro simulator. Microseparation during the swing phase of the walking cycle produced contact of the ceramic head on the rim of the polyethylene acetabular cup that deformed the softer polyethylene cup. No damage to the alumina ceramic femoral head was found. Under standard simulator conditions the volume change of the moderately crosslinked polyethylene cups was 25.6 ± 5.3 mm3/million cycles and this reduced to 5.6 ± 4.2 mm3/million cycles under microseparation conditions. Testing under microseparation conditions caused the rim of the polyethylene cup to deform locally, possibly due to creep, and the volume change of the polyethylene cup when the head relocated was substantially reduced, possibly due to improved lubrication. Joint laxity may be caused by poor soft tissue tension or migration and subsidence of components. In ceramic-on-polyethylene acetabular cups wear was decreased with a small degree of joint laxity, while in contrast in hard-on-hard alumina bearings, microseparation accelerated wear. These findings may have significant implications for the choice of fixation systems to be used for different types of bearing couples.


Author(s):  
J Bell ◽  
A A Besong ◽  
J L Tipper ◽  
E Ingham ◽  
B M Wroblewski ◽  
...  

Ultra-high molecular weight polyethylene (UHMWPE) wear debris induced osteolysis has a major role in the late aseptic loosening and ultimate failure of total hip replacements (THR). Clinically relevant in vitro simulations of wear are essential to predict the osteolytic potential of bearing surfaces in artificial hip joints. Newborn calf or bovine serum has been accepted as a boundary lubricant for such in vitro tests, but its biological stability has been questioned. This study compared the wear factors, number of wear particles and levels of microbial contamination produced in bovine serum and a gelatin-based lubricant. The wear factors produced by the two lubricants were not significantly different, however the wear debris morphology produced was substantially different. The bovine serum became contaminated with micro-organisms within 28 h, whereas the protein-based lubricant remained uncontaminated. The results showed that bovine serum was not a stable boundary lubricant. They also showed that although the wear factors for the two solutions were not significantly different, the protein-based lubricant was not a suitable alternative to bovine serum because the wear debris produced was not clinically relevant.


Author(s):  
R J A Bigsby ◽  
C S Hardaker ◽  
J Fisher

The Leeds physiological anatomical (PA) hip joint simulator was developed to apply three axes of loading and a complex three-dimensional motion so that the forces and motions can reproduce exactly the walking cycles defined by Paul. This paper presents the results of a study using the Leeds PA hip joint simulator to determine the wear of 32 mm ultra-high molecular weight polyethylene (UHMWPE) acetabular cups against stainless steel and zirconia ceramic heads, using bovine serum as lubricant. These results have been compared with the results of a previous study that used water as the lubricant, which led to UHMWPE transfer film being formed on the stainless steel head. Comparisons are also made with clinical results and results from other simulators. The study indicates that it is preferable to use bovine serum in simulator studies. In addition, the results indicate that if the surface roughness of the metallic and femoral heads are similar, and they remain undamaged during the tests, the wear rates of the UHMWPE cups are likely to be similar.


Author(s):  
Sunny M. Jhurani ◽  
C. Fred Higgs

Improvements in surgical procedures, installation techniques and properties of materials have resulted in a remarkable reduction in the failure of artificial hip joints (AHJ) due to infection. However, the durability of these replacements is greatly limited by premature osteolysis and eventual joint loosening, caused by macrophage activity in response to the release of submicron particles of ultra-high molecular weight polyethylene (UHMWPE) cup material [1–4]. The wear debris is mainly due to wear between the bearing surfaces, and these wear rates are known to be accelerated by the third body action of polymethylmethacrylate (PMMA) bone cement particles and metallic fragments of the femoral head material scattered within the synovial fluid lubricant [5]. This study is focused on development of a model that simulates the motion of UHMWPE particles in the synovial fluid between the AHJ bearing surfaces during articulation.


2003 ◽  
Vol 13 (2_suppl) ◽  
pp. 17-27 ◽  
Author(s):  
E. Ingham ◽  
J. Fisher ◽  
M.H. Stone

Polyethylene wear debris induced osteolysis is a major cause of failure in artificial hip joints. Sub micrometre size particles are taken up by macrophages which are stimulated to release osteolytic cytokines such as TNFα. This leads to bone resorption, loosening and failure. In vitro cell culture studies have shown particles in the size range 0.1 to 1 micrometre to be at least six times more reactive than larger particles. Studies of historically used gamma irradiated in air polyethylene show increased wear rate with damaged femoral heads and with aged and oxidised polyethylene. The aged and oxidised polyethylene also produced a greater percentage of smaller particles leading to increased osteolytic potential. Combined tribological and biological simulation models have been developed for pre-clinical assessment of osteolytic potential of artificial hip joints.


2000 ◽  
Vol 15 (6) ◽  
pp. 793-795 ◽  
Author(s):  
J. Nevelos ◽  
E. Ingham ◽  
C. Doyle ◽  
R. Streicher ◽  
A. Nevelos ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3569
Author(s):  
Jessica Hembus ◽  
Lisa Rößler ◽  
Mario Jackszis ◽  
Annett Klinder ◽  
Rainer Bader ◽  
...  

Several retrieval studies have reported on metallic depositions on ceramic femoral heads, but the effect on the wear behavior of artificial hip joints has not been investigated in wear simulator studies. In the present study, retrieved ceramic heads with metallic depositions as third particles were tested against cross-linked ultra-high-molecular-weight polyethylene (UHMWPE) liners in a hip wear simulator. The amount of liner wear and expansion of metallic depositions on the heads were determined before and after wear testing with digital microscopy. The surface roughness of the heads was investigated in areas with and without metallic depositions by laser scanning microscopy. After five million load cycles, a non-significant reduction in the metallic formation on the retrieved heads was found. The metallic areas showed a higher surface roughness compared to unconcerned areas. The liners showed a higher wear rate of 1.57 ± 1.36 mg/million cycles for 28 mm heads and 2.42 ± 0.82 mg/million cycles for 36 mm heads with metallic depositions, in comparison with new ceramic heads with a 28 mm size ((−0.06 ± 0.89) mg/million cycles) and 36 mm size ((2.04 ± 0.46) mg/million cycles). Metallic transfer on ceramic heads can lead to an increased surface roughness and higher wear rates at the UHMWPE liners. Therefore, metallic contact of the ceramic femoral head should be avoided.


Sign in / Sign up

Export Citation Format

Share Document