An enhanced computed-torque control algorithm for robot manipulators

Author(s):  
Q Li ◽  
S K Tso ◽  
A N Poo

An enhanced computed-torque control approach, which is developed based on the intuitive design concept of the internal model control structure, is proposed in this paper. Both theoretical analyses and simulation studies on a two-link robot prove that the robustness of this enhanced algorithm can surpass that of the conventional computed-torque control scheme by a large extent.

Author(s):  
Farsam Farzadpour ◽  
Hossein Faraji

A lot of endeavors regarding the development of slider–crank mechanism in the ship’s propeller have been made and continue to be investigated. This paper presents the position control of a slider–crank mechanism, which is driven by the piston cylinder actuator to adjust the blade pitch angle. An effective motion control strategy known as the computed torque control can ensure global asymptotic stability. However, it is essential for this control scheme to have a precise and accurate system model. Moreover, large amounts of changes in the output and even instability of process are caused by a small amount of measurement or process noise, when the derivative gain is sufficiently large. Accordingly, in order to compensate any parameter deviation and disturbances as well as minimizing errors, we have presented a genetic algorithm-based computed torque control system which adjusts the proportional-derivative gains. Computer simulations are performed which reveals that asymptotically stability is reached and it confirms the effectiveness and high tracking capability of the proposed control scheme.


2017 ◽  
Author(s):  
Ololade O Obadina ◽  
◽  
Julius Bernth ◽  
Kaspar Althoefer ◽  
M. Hasan Shaheed

2001 ◽  
Author(s):  
Perry Y. Li ◽  
Petar J. Bjegovic ◽  
Shri Ramaswamy

Abstract Many manufacturing processes involve the successive processing of the substrate at multiple station on a transport medium, with the hope that at the end of the process, the product has the desired property. Paper manufacturing is an example in which over 90% of the water from pulp is sequentially removed through gravity, vacuum dewatering, pressing, and thermal drying. The consistency and uniformity of the moisture content at the end of process is important for paper quality. Current strategy for the control of moisture content uses a feedback sensor at the end of the process to adjust the dryers. This introduces a long deadtime and causes excessive use of the dryers, which translate to limitations in performance, robustness and inefficient energy usage. In this paper, we investigate a new control approach in which in-process moisture contents are estimated using air-flow as surrogate measurements, and the pressure settings in the multiple vacuum dewatering boxes are adjusted according to the surrogate measurements. A preemptive control algorithm is developed which has the ability to decouple and eliminate the effects of the disturbances that occur upstream in the process from downstream. Robustness analysis and simulation studies suggest that as long as the surrogate measurements are accurate, the proposed control scheme will be robust and accurate.


10.14311/258 ◽  
2001 ◽  
Vol 41 (4-5) ◽  
Author(s):  
T. Vyhlídal ◽  
P. Zítek

An original modelling approach for SISO systems is presented, based on a first order model with more than one delay in its structure. By means of this model it is possible truly to hit off the properties of systems which are conventionally described by higher order models. The identification method making use of a relay feedback test combined with transient responses of the system has proved to be suitable for assessing the model parameters. With respect to its plain structure the model is well suited to be applied in the framework of an internal model control scheme (IMC). The resultant control algorithm with only one optional parameter is very simple and can easily be implemented, for example by means of a programmable controller (PLC).


2014 ◽  
Vol 490-491 ◽  
pp. 1151-1156
Author(s):  
William Takeshi Pereira ◽  
Tatiana F.P.A.T. Pazelli

In this paper parametric identification algorithms are applied to estimate dynamic parameters of a space manipulator, whose model is described through the Dynamically Equivalent Manipulator approach. Gradient and least-square methods are applied in order to evaluate capability of the schemes. A sufficiently rich input signal is applied as reference trajectory for joints position, while a simple model-based PID computed torque control scheme is responsible for keeping the trajectory tracking. Simulation results for a two degree-of-freedom space manipulator have shown the effectiveness of the proposal.


Sign in / Sign up

Export Citation Format

Share Document