Preemptive Control of Multiply Actuated Processes: Application to Moisture Content Control in Paper Manufacturing Using Surrogate Measurements

Author(s):  
Perry Y. Li ◽  
Petar J. Bjegovic ◽  
Shri Ramaswamy

Abstract Many manufacturing processes involve the successive processing of the substrate at multiple station on a transport medium, with the hope that at the end of the process, the product has the desired property. Paper manufacturing is an example in which over 90% of the water from pulp is sequentially removed through gravity, vacuum dewatering, pressing, and thermal drying. The consistency and uniformity of the moisture content at the end of process is important for paper quality. Current strategy for the control of moisture content uses a feedback sensor at the end of the process to adjust the dryers. This introduces a long deadtime and causes excessive use of the dryers, which translate to limitations in performance, robustness and inefficient energy usage. In this paper, we investigate a new control approach in which in-process moisture contents are estimated using air-flow as surrogate measurements, and the pressure settings in the multiple vacuum dewatering boxes are adjusted according to the surrogate measurements. A preemptive control algorithm is developed which has the ability to decouple and eliminate the effects of the disturbances that occur upstream in the process from downstream. Robustness analysis and simulation studies suggest that as long as the surrogate measurements are accurate, the proposed control scheme will be robust and accurate.

Author(s):  
Q Li ◽  
S K Tso ◽  
A N Poo

An enhanced computed-torque control approach, which is developed based on the intuitive design concept of the internal model control structure, is proposed in this paper. Both theoretical analyses and simulation studies on a two-link robot prove that the robustness of this enhanced algorithm can surpass that of the conventional computed-torque control scheme by a large extent.


2008 ◽  
Vol 18 (08) ◽  
pp. 2319-2344
Author(s):  
AHMED OTEAFY ◽  
MOHAMED ZRIBI ◽  
NEJIB SMAOUI

This paper presents an approach to control the chaotic dynamics of discrete-time (or discretizable) systems. The objective of the paper is to focus on the suppression of the chaotic dynamics and the restoration of order with a state feedback controller. The proposed control method works by targeting instantaneous measures of the Lyapunov exponents of a system and setting them to desired values. At first, the paper presents an instantaneous measure of the Lyapunov exponents; this measure is used to control the system's dynamics. Then, the formulation of the control algorithm to suppress chaos is presented. Two cases for the control structure are considered. The first case corresponds to the case when the number of control inputs is equal to the number of states; the second case corresponds to the case when the number of control inputs is less than the number of states. The Lorenz system, the smooth Chua Oscillator system, the Rössler-hyperchaos system and a fourth order chaotic oscillator system are used as examples to illustrate the proposed control scheme. The simulation results show the efficacy of the proposed control approach.


2014 ◽  
Vol 644-650 ◽  
pp. 735-740
Author(s):  
Yu Ling Ye

An engineering buoyancy control scheme was proposed to compensate the change of residual buoyancy for low-speed under-actuated AUVs. The buoyancy control system is made up of buoyancy controller and two sets of buoyancy control devices include: water tank, sea water pump, valve grouping, pipeline etc. Buoyancy control devices were configured to both head and tail part of the AUV symmetrical to its buoyant center. Depth control algorithm and buoyancy control algorithm were proposed separately. In the process of voyage at a constant depth, the real time speed, pitch angle and depth error were detected to evaluate the residual buoyancy indirectly, and then the real time buoyancy control was executed by pumping the water into or out of the tanks. The buoyancy control scheme was applied to the type of low-speed under-actuated AUV and simulation and experiments results show that the buoyancy control approach and the control laws are feasible and effective.


2011 ◽  
Vol 422 ◽  
pp. 167-171 ◽  
Author(s):  
Qin He Gao ◽  
Wen Liang Guan

The synchronization control problem of a large equipment erecting system driven by two oil cylinders side-by-side is analyzed. A closed loop control scheme of hydraulically driven erecting system based on electro-hydraulic proportion control valve is given. Considering the existence of time-varying parameters of hydraulic system, intelligent PID control algorithm is implemented by adding neurotic adaptive element control approach to improve the adaptive control capacity of the controller. Simulation results show that the intelligent PID control algorithm is more effective than conventional method for the erecting system synchronization control.


Author(s):  
Vinodhini M.

The objective of this paper is to develop a Direct Model Reference Adaptive Control (DMRAC) algorithm for a MIMO process by extending the MIT rule adopted for a SISO system. The controller thus developed is implemented on Laboratory interacting coupled tank process through simulation. This can be regarded as the relevant process control in petrol and chemical industries. These industries involve controlling the liquid level and the flow rate in the presence of nonlinearity and disturbance which justifies the use of adaptive techniques such as DMRAC control scheme. For this purpose, mathematical models are obtained for each of the input-output combinations using white box approach and the respective controllers are developed. A detailed analysis on the performance of the chosen process with these controllers is carried out. Simulation studies reveal the effectiveness of proposed controller for multivariable process that exhibits nonlinear behaviour.


2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 51
Author(s):  
Jozef Živčák ◽  
Michal Kelemen ◽  
Ivan Virgala ◽  
Peter Marcinko ◽  
Peter Tuleja ◽  
...  

COVID-19 was first identified in December 2019 in Wuhan, China. It mainly affects the respiratory system and can lead to the death of the patient. The motivation for this study was the current pandemic situation and general deficiency of emergency mechanical ventilators. The paper presents the development of a mechanical ventilator and its control algorithm. The main feature of the developed mechanical ventilator is AmbuBag compressed by a pneumatic actuator. The control algorithm is based on an adaptive neuro-fuzzy inference system (ANFIS), which integrates both neural networks and fuzzy logic principles. Mechanical design and hardware design are presented in the paper. Subsequently, there is a description of the process of data collecting and training of the fuzzy controller. The paper also presents a simulation model for verification of the designed control approach. The experimental results provide the verification of the designed control system. The novelty of the paper is, on the one hand, an implementation of the ANFIS controller for AmbuBag pressure control, with a description of training process. On other hand, the paper presents a novel design of a mechanical ventilator, with a detailed description of the hardware and control system. The last contribution of the paper lies in the mathematical and experimental description of AmbuBag for ventilation purposes.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Sign in / Sign up

Export Citation Format

Share Document