Stress distribution of a coated film with an interlayer under elastohydrodynamic lubrication conditions

Author(s):  
T Fujino ◽  
K Iwamoto ◽  
N Akuzawa ◽  
K Tanaka
1989 ◽  
Vol 111 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Farshid Sadeghi ◽  
Ping C. Sui

The internal stress distribution in elastohydrodynamic lubrication of rolling/sliding line contact was obtained. The technique involves the full EHD solution and the use of Lagrangian quadrature to obtain the internal stress distributions in the x, y, z-directions and the shear stress distribution as a function of the normal pressure and the friction force. The principal stresses and the maximum shear stress were calculated for dimensionless loads ranging from (2.0452 × 10−5) to (1.3 × 10−4) and dimensionless velocity of 10−10 to 10−11 for slip ratios ranging from 0 to pure sliding condition.


Author(s):  
Shivam S Alakhramsing ◽  
Matthijn B de Rooij ◽  
Dirk J Schipper ◽  
Mark van Drogen

In cam–roller follower units two lubricated contacts may be distinguished, namely the cam–roller contact and roller–pin contact. The former is a nonconformal contact while the latter is conformal contact. In an earlier work a detailed transient finite line contact elastohydrodynamic lubrication model for the cam–roller contact was developed. In this work a detailed transient elastohydrodynamic lubrication model for the roller–pin contact is developed and coupled to the earlier developed cam–roller contact elastohydrodynamic lubrication model via a roller friction model. For the transient analysis a heavily loaded cam–roller follower unit is analyzed. It is shown that likewise the cam–roller contact, the roller–pin contact also inhibits typical finite line contact elastohydrodynamic lubrication characteristics at high loads. The importance of including elastic deformation for analyzing lubrication conditions in the roller–pin contact is highlighted here, as it significantly enhances the film thickness and friction coefficient. Other main findings are that for heavily loaded cam–roller follower units, as studied in this work, transient effects and roller slippage are negligible, and the roller–pin contact is associated with the highest power losses. Finally, due to the nontypical elastohydrodynamic lubrication characteristics of both cam–roller and roller–pin contact numerical analysis becomes inevitable for the evaluation of the film thicknesses, power losses, and maximum pressures.


Author(s):  
Xincai Tan ◽  
Christopher E Goodyer ◽  
Peter K Jimack ◽  
Robert I Taylor ◽  
Mark A Walkley

Elastohydrodynamic lubrication modelling plays an important role in engineering design and analysis, since a number of important mechanical components operate under elastohydrodynamic lubrication conditions. In this article, methods are presented for solving both line and point contact cases using multiphysics software. The advantages, and the overheads, of using such an approach over developing highly specialised, bespoke software are highlighted. In order to calculate the deformation of the contacts three different methods are developed and their relative performance is assessed. The advantage of using a nested solution strategy has also been examined. The flexibility of the multiphysics software approach is highlighted in results involving a complex transient case modelling an involute gear.


Sign in / Sign up

Export Citation Format

Share Document