Dynamic simulation of a high-performance sequentially turbocharged marine diesel engine

2002 ◽  
Vol 3 (3) ◽  
pp. 115-125 ◽  
Author(s):  
G Benvenuto ◽  
U Campora

The sequential turbocharging technique is used to improve the performance of highly rated diese engines in particular at part loads. However, the transient behaviour of the sequential turbocharging connection/disconnection phases may be difficult to calibrate and requires an accurate study and development. This may be accomplished, in addition to the necessary experimentation, by means of dynamic simulation techniques. In this paper a model for the dynamic simulation of a sequentially turbocharged diesel engine is presented. A two-zone, non-adiabatic, actual cycle approach is used for the chemical and thermodynamic phenomena simulation in the cylinder. Fluid mass and energy accumulation in the engine volumes are evaluated by means of a filling and emptying method. The simulation of the turbocharger dynamics combines the use of the compressor and turbine maps with a model of the sequential turbocharging connection/disconnection valves and of their governor system. The procedure is applied to the simulation of the Wärtsilä 18V 26X engine, a highly rated, recently developed, sequentially turbocharged marine diesel engine, whose experimental results are used for the steady state and transient validation of the simulation code with particular reference to the sequential turbocharging connection/disconnection phases. The presented results show the time histories of some important variables during typical engine load variations.

Author(s):  
Salman Abdu ◽  
Song Zhou ◽  
Malachy Orji

Highly increased fuel prices and the need for greenhouse emissions reduction from diesel engines used in marine engines in compliance with International Maritime Organization (IMO) on the strict regulations and guidelines for the Energy Efficiency Design Index (EEDI) make diesel engine exhaust gas heat recovery technologies attractive. The recovery and utilization of waste heat not only conserves fuel, but also reduces the amount of waste heat and greenhouse gases dumped to the environment .The present paper deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from waste heat exhaust gases in a marine diesel engine. This analysis is utilized to identify the sources of losses in useful energy within the components of the system for three different configurations of waste heat recovery system considered. The second law efficiency and the exergy destroyed of the components are investigated to show the performance of the system in order to select the most efficient waste heat recovery system. The effects of ambient temperature are also investigated in order to see how the system performance changes with the change of ambient temperature. The results of the analysis show that in all of the three different cases the boiler is the main source of exergy destruction and the site of dominant irreversibility in the whole system it accounts alone for (31-52%) of losses in the system followed by steam turbine and gas turbine each accounting for 13.5-27.5% and 5.5-15% respectively. Case 1 waste heat recovery system has the highest exergetic efficiency and case 3 has the least exergetic efficiency.


2013 ◽  
Vol 331 ◽  
pp. 148-152
Author(s):  
Xiu Xu Zhao ◽  
Zhi Xiang Hu ◽  
An Jian Huang

According to the characteristics of large size, small clearance ratio, high oil film pressure and thin oil film thickness in the actual conditions of high power marine diesel engine bearing, this Paper analyzes oil film pressure distribution on inner surface of bearing bush based on the finite difference method, uses finite element method to establish the hierarchical model, and analyzes stress and strain distribution on bearing alloy. In addition, this Paper researches the changes of stress and strain distribution on bearing alloy layer when alloy layer thickness changes for the optimization design of high power marine diesel engine bearing bush.


Sign in / Sign up

Export Citation Format

Share Document