Some Deductions from Bowen's Non-Newtonian Turbulent Correlation

1967 ◽  
Vol 9 (5) ◽  
pp. 414-416
Author(s):  
J. Harris

Starting from Bowen's empirical correlation for non-Newtonian turbulent flow through pipes, deductions are made about the form of the velocity profile, the effective viscosity, the Reynolds number for dynamic similarity and finally the associated form of the friction factor-Reynolds number correlation.

2006 ◽  
Vol 129 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Noor Afzal ◽  
Abu Seena

In transitional rough pipes, the present work deals with alternate four new scales, the inner wall transitional roughness variable ζ=Z+∕ϕ, associated with a particular roughness level, defined by roughness scale ϕ connected with roughness function ▵U+, the roughness friction Reynolds number Rϕ (based on roughness friction velocity), and roughness Reynolds number Reϕ (based on roughness average velocity) where the mean turbulent flow, little above the roughness sublayer, does not depend on pipes transitional roughness. In these alternate variables, a two layer mean momentum theory is analyzed by the method of matched asymptotic expansions for large Reynolds numbers. The matching of the velocity profile and friction factor by Izakson-Millikan-Kolmogorov hypothesis gives universal log laws that are explicitly independent of pipe roughness. The data of the velocity profile and friction factor on transitional rough pipes provide strong support to universal log laws, having the same constants as for smooth walls. There is no universality of scalings in traditional variables and different expressions are needed for various types of roughness, as suggested, for example, with inflectional-type roughness, monotonic Colebrook-Moody roughness, etc. In traditional variables, the roughness scale, velocity profile, and friction factor prediction for inflectional pipes roughness are supported very well by experimental data.


Author(s):  
K. Jeffs ◽  
D. Maynes ◽  
B. W. Webb

Due to the increase of application in a number of emerging technologies, a growing amount of research has focused on the reduction of drag in microfluidic transport. A novel approach reported in the recent literature is to fabricate micro-ribs and cavities in the channel wall that are then treated with a hydrophobic coating. Such surfaces have been termed super- or ultrahydrophobic and the contact area between the flowing liquid and the solid wall is greatly reduced. Previous numerical studies have focused primarily on the laminar flow through such channels with reductions in the flow resistance as large as 87% being predicted and observed. There has been little work however, that has explored the physics and the potential drag reduction associated with turbulent flow through microchannels with ultrahydrophobic walls. This paper reports the results of a numerical investigation of the turbulent flow in a parallel plate microchannel with ultrahydrophobic walls. In this study microribs and cavities are oriented parallel to the flow direction. The channel walls are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. A k-ω turbulence modeling scheme is implemented for closure to the turbulent RANS equations. Results are presented for the friction factor Reynolds number product as a function of relevant governing dimensionless parameters. The Reynolds number was varied from 2,000 to 10,000. Results show, as with the laminar flow case, that as the shear-free region increases the friction factor-Reynolds number product decreases. The observed reduction, however, was found to be significantly greater under turbulent flow conditions than for the laminar flow scenarios.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


2021 ◽  
Vol 33 (6) ◽  
pp. 1105-1118
Author(s):  
Pei-jie Zhang ◽  
Jian-zhong Lin ◽  
Xiao-ke Ku

2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
M. Firouzi ◽  
S. H. Hashemabadi

In this paper, the motion equation for steady state, laminar, fully developed flow of Newtonian fluid through the concave and convex ducts has been solved both numerically and analytically. These cross sections can be formed due to the sedimentation of heavy components such as sand, wax, debris, and corrosion products in pipe flows. The influence of duct cross section on dimensionless velocity profile, dimensionless pressure drop, and friction factor has been reported. Finally based on the analytical solutions three new correlations have been proposed for the product of Reynolds number and Fanning friction factor (Cf Re) for these geometries.


Author(s):  
D. Kawashima ◽  
Y. Asako

This paper presents experimental results on friction factor of gaseous flow in a PEEK micro-tube with relative surface roughness of 0.04 %. The experiments were performed for nitrogen gas flow through the micro-tube with 514.4 μm in diameter and 50 mm in length. Three pressure taps holes with 5 mm interval were drilled and the local pressures were measured. Friction factor is obtained from the measured pressure differences. The experiments were conducted for turbulent flow region. The friction factor obtained by the present study are compared with those in available literature and also numerical results. The friction factor obtained is slightly higher than the value of Blasius formula.


Sign in / Sign up

Export Citation Format

Share Document