Effect of Surface Roughness on Gaseous Flow Through Microchannels

2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.

1999 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow in microchannels etched in silicon with hydraulic diameters of 9.7, 19.6, and 46.6 μm, and Reynolds numbers ranging from 0. 2 to 1000. The objectives of this research are (1) to measure the pressure distribution along the length of a microchannel; and (2) to determine the friction factor within the fully developed region of the microchannel. The pressure distribution is presented as absolute local pressure plotted against the distance from the microchannel inlet. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number with the outlet Knudsen number, Kn, as a curve parameter. The following conclusions have been reached in the present investigation: (1) Pressure losses at the microchannel entrance can be significant; (2) the product, f*Re, when measured sufficiently far away from the entrance and exit is a constant in the laminar flow region; and (3) the friction factor decreases as the Knudsen number increases.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


1994 ◽  
Vol 116 (3) ◽  
pp. 488-493 ◽  
Author(s):  
B. Youn ◽  
C. Yuen ◽  
A. F. Mills

Numerical simulations of incompressible turbulent flow through rectangular ducts with one side rib-roughened were performed to determine pressure drop. The “PHOENICS” software package was used for the computations, which required provision of a wall function for transverse rib-roughened surfaces. The present study was conducted in the range of 105≤ Reynolds number ≤ 107, 0.01 ≤ rib height to hydraulic diameter ratio ≤ 0.04, 10≤ pitch to rib height ratio ≤ 40. Using the numerical results, friction factor charts for various aspect ratios were generated. The numerical results agreed well with experimental data that was obtained for 105 < Reynolds number < 2 × 105. In addition, a scheme for predicting friction factor using existing correlations for smooth and rough walls was developed.


1986 ◽  
Vol 108 (3) ◽  
pp. 343-347 ◽  
Author(s):  
C. W. Crawford ◽  
O. A. Plumb

Experiments were performed to determine the effect of roughness on flow through randomly packed beds of spheres. Three different packings were investigated, one of smooth spheres, and two others composed of spheres with roughness elements added to the surface. The relative roughness, defined as the height of the added elements divided by the diameter of the smooth spheres, was .012 and .026 for these two cases. The experiments covered a range of Reynolds numbers based on the sphere diameter from near unity where the flow is dominated by viscosity to 1600 where the flow is dominated by inertia. It was found that the pressure drop is substantially increased by the presence of surface roughness over the entire range of Reynolds numbers studied. The observed behavior is quite different from that which has been proposed previously by drawing analogy with flow in rough pipes, since the flow at low Reynolds number as well as high Reynolds number was affected by roughness.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
H. Stel ◽  
A. T. Franco ◽  
S. L. M. Junqueira ◽  
R. H. Erthal ◽  
R. Mendes ◽  
...  

Turbulent flow in d-type corrugated pipes of various aspect ratios has been numerically investigated in terms of flow pattern and friction factor, for Reynolds numbers ranging from 5000 to 100,000. The present numerical model was verified by comparing the friction factor with experimental and numerical results from the literature. The numerical analysis suggested that d-type behavior exists for groove aspect ratios up to w/k = (groove width/rib height) = 2 independent of the pitch. However, for a ratio of w/k = 3 an important change in the flow pattern occurs so that the pressure drag exerted by the groove walls becomes important. It is shown that the friction factor is independent of the groove height as long as the flow is similar to a flow in a d-type corrugated pipe. Moreover, the friction factor curve for d-type pipes shows a logarithmic behavior as function of the Reynolds number, so that a simple method can be used to derive an expression for the friction factor as a function of the Reynolds number and the relative groove width only. The results may be useful to engineering projects that require a better prediction of the friction factor in d-type corrugated pipes.


2013 ◽  
Vol 853 ◽  
pp. 576-581
Author(s):  
Jian Fei Wang ◽  
Yong Bin Ji ◽  
Shu Sheng Zang

This study is aimed at researching surface roughness effect on the performance of blades in terms of aerodynamics. Numerical simulation on a rough flat plate with a row of 35°round film holes under different roughness heights, Reynolds numbers and blowing ratios is conducted to see how they affect film cooling on a flat plate. In terms of aerodynamics, the increase of surface roughness height, Reynolds number and blow ratio will result in the increase of skin friction coefficient. Besides, roughness has combined effects with Reynolds number and blowing ratio So the effect of surface roughness on blades performance is too big to ignore.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


2003 ◽  
Vol 27 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

Wind tunnel results are reported concerning the effects of blade aspect ratio and Reynolds number on the performance of a horizontal axis wind turbine (HAWT) with Mie-type1 tip attachments. The flow behaviour around the blade tips and the Mie-type tip vanes is presented. Detailed surface oil film visualization and velocity measurements around the blade tips, with and without Mie vanes, were obtained with the two-dimensional, Laser-Doppler Velocimetry method. Experiments were performed with rotors having blades with different aspect ratio and operating at different Reynolds numbers. The properties of the vortices generated by the Mie vanes and the blade tips were carefully studied. It was found that increased power augmentation by Mie vanes is achieved with blades having smaller aspect ratio and smaller Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document