Mechanical Cooling Systems for use in Space

Author(s):  
T W Bradshaw ◽  
A H Orlowska

This paper describes the development of long-life cooling systems for use in spacecraft. The original single-stage coolers were developed by the Rutherford Appleton Laboratory (RAL) and Oxford University for the Improved Stratospheric and Mesospheric Sounder (ISAMS), an Oxford University instrument that will be part of the National Aeronautics and Space Administration's (US) (NASA's) Upper Atmosphere Research Satellite. Since then RAL has continued development of these coolers to produce lower temperatures and the technology has been transferred to industry via the British Technology Group (BTG). This has been possible by the award of contracts from the European Space Agency (ESA) and internal funding. The coolers are now available from industry and have been baselined for a variety of future instruments both in Europe and the United States.

2021 ◽  
Vol 92 (2) ◽  
pp. 129-134
Author(s):  
Charles R. Doarn ◽  
James D. Polk ◽  
Anatoli Grigoriev ◽  
Jean-Marc Comtois ◽  
Kazuhito Shimada ◽  
...  

INTRODUCTION: In the 1990s, Canada, member states of the European Space Agency, Japan, the Russian Federation, and the United States entered into an international agreement Concerning Cooperation on the Civil International Space Station. Among the many unique infrastructure challenges, partners were to develop a comprehensive international medical system and related processes to enable crew medical certification and medical support for all phases of missions, in a framework to support a multilateral space program of unprecedented size, scope, and degree of integration. During the Shuttle/Mir Program, physicians and specialized experts from the United States and Russia studied prototype systems and developed and operated collaborative mechanisms. The 1998 NASA Memoranda of Understanding with each of the other four partners established the Multilateral Medial Policy Board, the Multilateral Space Medicine Board, and the Multilateral Medical Operations Panel as medical authority bodies to ensure International Space Station (ISS) crew health and performance. Since 1998, the medical system of the ISS Program has ensured health and excellent performance of the international crewsan essential prerequisite for the construction and operation of the ISSand prevented mission-impacting medical events and adverse health outcomes. As the ISS is completing its second decade of crewed operation, it is prudent to appraise its established medical framework for its utility moving forward in new space exploration initiatives. Not only the ISS Program participants, but other nations and space agencies as well, concomitant with commercial endeavors in human spaceflight, can benefit from this evidence for future human exploration programs.Doarn CR, Polk JD, Grigoriev A, Comtois J-M, Shimada K, Weerts G, Dervay JP, Taddeo TA, Sargsyan A. A framework for multinational medical support for the International Space Station: a model for exploration. Aerosp Med Hum Perform. 2021; 92(2):129134.


This chapter explains the ratification, main contents, and prospect of the 1979 Moon Agreements. The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, better known as the Moon Treaty or Moon Agreement, is a multilateral treaty that turns jurisdiction of all celestial bodies (including the orbits around such bodies) over to the participant countries. Thus, all activities would conform to international law, including the United Nations Charter. It has not been ratified by any state that engages in self-launched human spaceflight or has plans to do so (e.g., the United States, the larger part of the member states of the European Space Agency, Russia [former Soviet Union], People's Republic of China, and Japan). As of January 2019, 18 states are parties to the treaty. As the current Moon Agreement has emerged as a problem as the United States and other major powers are not joining it, many lawyers, professors, and scientists urged that the powers ratify it quickly.


2019 ◽  
Author(s):  
Theodoros E. Sarris ◽  
Elsayed R. Talaat ◽  
Minna Palmroth ◽  
Iannis Dandouras ◽  
Errico Armandillo ◽  
...  

Abstract. The Daedalus mission has been proposed to the European Space Agency (ESA) in response to the call for ideas for the Earth Observation programme's 10th Earth Explorer. It was selected in 2018 as one of three candidates for a Phase-0 feasibility study. The goal of the mission is to quantify the key electrodynamic processes that determine the structure and composition of the upper atmosphere, the gateway between the Earth’s atmosphere and space. An innovative preliminary mission design allows Daedalus to access electrodynamics processes down to altitudes of 150 km and below. Daedalus will perform in-situ measurements of plasma density and temperature, ion drift, neutral density and wind, ion and neutral composition, electric and magnetic fields and precipitating particles. These measurements will unambiguously quantify the amount of energy deposited in the upper atmosphere during active and quiet geomagnetic times via Joule heating and energetic particle precipitation, estimates of which currently vary by orders of magnitude between models. An innovation of the Daedalus preliminary mission concept is that it includes the release of sub-satellites at low altitudes: combined with the main spacecraft, these sub-satellites will provide multi-point measurements throughout the Lower Thermosphere-Ionosphere region, down to altitudes below 120 km, in the heart of the most under-explored region in the Earth's atmosphere. This paper describes Daedalus as originally proposed to ESA.


Author(s):  
Boon Kristen

The United States Court of Appeals for the Third Circuit rejected the long-held assumption that international organizations are entitled to absolute immunity under the domestic International Organizations Immunities Act (‘IOIA’). The legal question raised by this case is: does the language of the IOIA allow for the incorporation of subsequent changes to sovereign state immunity thereby conferring a restrictive, not absolute, immunity upon international organizations? The court applied the same concept of restrictive immunity to international organizations as has been developed and applied to sovereign states. This case has important implications for the evolution of immunities of international organizations over time.


2019 ◽  
Vol 11 (4) ◽  
pp. 433 ◽  
Author(s):  
Louis Baetens ◽  
Camille Desjardins ◽  
Olivier Hagolle

The Sentinel-2 satellite mission, developed by the European Space Agency (ESA) for the Copernicus program of the European Union, provides repetitive multi-spectral observations of all Earth land surfaces at a high resolution. The Level 2A product is a basic product requested by many Sentinel-2 users: it provides surface reflectance after atmospheric correction, with a cloud and cloud shadow mask. The cloud/shadow mask is a key element to enable an automatic processing of Sentinel-2 data, and therefore, its performances must be accurately validated. To validate the Sentinel-2 operational Level 2A cloud mask, a software program named Active Learning Cloud Detection (ALCD) was developed, to produce reference cloud masks. Active learning methods allow reducing the number of necessary training samples by iteratively selecting them where the confidence of the classifier is low in the previous iterations. The ALCD method was designed to minimize human operator time thanks to a manually-supervised active learning method. The trained classifier uses a combination of spectral and multi-temporal information as input features and produces fully-classified images. The ALCD method was validated using visual criteria, consistency checks, and compared to another manually-generated cloud masks, with an overall accuracy above 98%. ALCD was used to create 32 reference cloud masks, on 10 different sites, with different seasons and cloud cover types. These masks were used to validate the cloud and shadow masks produced by three Sentinel-2 Level 2A processors: MAJA, used by the French Space Agency (CNES) to deliver Level 2A products, Sen2Cor, used by the European Space Agency (ESA), and FMask, used by the United States Geological Survey (USGS). The results show that MAJA and FMask perform similarly, with an overall accuracy around 90% (91% for MAJA, 90% for FMask), while Sen2Cor’s overall accuracy is 84%. The reference cloud masks, as well as the ALCD software used to generate them are made available to the Sentinel-2 user community.


2020 ◽  
Vol 9 (1) ◽  
pp. 153-191 ◽  
Author(s):  
Theodoros E. Sarris ◽  
Elsayed R. Talaat ◽  
Minna Palmroth ◽  
Iannis Dandouras ◽  
Errico Armandillo ◽  
...  

Abstract. The Daedalus mission has been proposed to the European Space Agency (ESA) in response to the call for ideas for the Earth Observation program's 10th Earth Explorer. It was selected in 2018 as one of three candidates for a phase-0 feasibility study. The goal of the mission is to quantify the key electrodynamic processes that determine the structure and composition of the upper atmosphere, the gateway between the Earth's atmosphere and space. An innovative preliminary mission design allows Daedalus to access electrodynamics processes down to altitudes of 150 km and below. Daedalus will perform in situ measurements of plasma density and temperature, ion drift, neutral density and wind, ion and neutral composition, electric and magnetic fields, and precipitating particles. These measurements will unambiguously quantify the amount of energy deposited in the upper atmosphere during active and quiet geomagnetic times via Joule heating and energetic particle precipitation, estimates of which currently vary by orders of magnitude between models and observation methods. An innovation of the Daedalus preliminary mission concept is that it includes the release of subsatellites at low altitudes: combined with the main spacecraft, these subsatellites will provide multipoint measurements throughout the lower thermosphere–ionosphere (LTI) region, down to altitudes below 120 km, in the heart of the most under-explored region in the Earth's atmosphere. This paper describes Daedalus as originally proposed to the ESA.


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2021 ◽  
Vol 37 (2) ◽  
pp. 190-201
Author(s):  
Sabine Hanke

This article examines the production and promotion of popular entertainments by the German Sarrasani Circus during the interwar period and how they were used to establish specific national narratives in Germany and Latin America. Focusing particularly on its engagement of Lakota performers, it argues that the Circus acted as an active negotiator of national concerns within and beyond Germany’s borders, and presented the group as ‘familiar natives’ in order to appeal to local and national ideas of Germanness. At the same time, it shows that the performers pursued their own interests in becoming international and cosmopolitan performers, thereby challenging the assimilation forced upon their traditions and culture by institutions in the United States. Finally, it demonstrates how foreign propaganda built on the Circus’s national image in Latin America to restore Germany’s international relations after the First World War. Sabine Hanke is a lecturer in Modern History at the University of Duisberg-Essen. Her research examines the German and British interwar circus. She was recently awarded her PhD in cultural history, from which this article has evolved, at the University of Sheffield. A chapter based on her research is scheduled for publication in Circus Histories and Theories, ed. Nisha P.R. and Melon Dilip (Oxford University Press).


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document