Amine-immobilized Three-dimensional Wormhole Mesostructured MSU-J Silica for CO2 Adsorption: Effect of Amine Loading and Temperature on the Adsorption Capacity

2015 ◽  
Vol 44 (7) ◽  
pp. 928-930 ◽  
Author(s):  
Jian Jiao ◽  
Jing Cao ◽  
Pan P. Lv
2021 ◽  
pp. 132127
Author(s):  
Rong Pan ◽  
Yanni Guo ◽  
Yining Tang ◽  
Dong Wei ◽  
Liu Mengli ◽  
...  

2014 ◽  
Vol 53 (5) ◽  
pp. 2750-2750 ◽  
Author(s):  
Vadapalli Chandrasekhar ◽  
Chandrajeet Mohapatra ◽  
Rahul Banerjee ◽  
Arijit Mallick

2019 ◽  
Vol 19 (3) ◽  
pp. 475-483 ◽  
Author(s):  
Muvumbu Jean-Luc Mukaba ◽  
Alechine Emmanuel Ameh ◽  
Chuks Paul Eze ◽  
Leslie Felicia Petrik

Author(s):  
Joanna Srenscek-Nazzal ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
Rafal J. Wróbel ◽  
Beata Michalkiewicz

2021 ◽  
pp. 004051752110418
Author(s):  
Wenqian Feng ◽  
Yanli Hu ◽  
Xin rong Li ◽  
Lidong Liu

To improve the effectiveness of industrial robots in the textile and garment industry, it is necessary to expand the application range of electrostatic adsorption end effectors and solve the problem of automatically grasping and transferring fabrics during garment processing. Taking weft-knit fabric as an example, this paper begins by analyzing the factors that influence the electrostatic adsorption capacity, and then constructing an electrostatic adsorption capacity model based on the fabric characteristics. Next, the shape arrangement and structural parameters of the electrode plate are optimized by taking the electrostatic adsorption force model and maximizing the adsorption force per unit area. Finally, the adsorption effect of the electrostatic adsorption end effector is verified by simulation and experiment. The verification results show that the electrode with a comb-shaped arrangement and optimized structural parameters can adsorb clothing fabric well and meets the requirements of clothing automated production lines. This study provides a new method for solving the problem of automatically grasping and transferring fabrics and provides technical support for improving automation in the garment industry.


2020 ◽  
Vol 294 ◽  
pp. 109871 ◽  
Author(s):  
Satriyo Krido Wahono ◽  
Joseph Stalin ◽  
Jonas Addai-Mensah ◽  
William Skinner ◽  
Ajayan Vinu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1690
Author(s):  
Yong Han ◽  
Yanming Zhu ◽  
Yu Liu ◽  
Yang Wang ◽  
Han Zhang ◽  
...  

This study focuses on the nanostructure of shale samples with type III kerogen and its effect on methane adsorption capacity. The composition, pore size distribution, and methane adsorption capacities of 12 shale samples were analyzed by using the high-pressure mercury injection experiment, low-temperature N2/CO2 adsorption experiments, and the isothermal methane adsorption experiment. The results show that the total organic carbon (TOC) content of the 12 shale samples ranges from 0.70% to ~35.84%. In shales with type III kerogen, clay minerals and organic matter tend to be deposited simultaneously. When the TOC content is higher than 10%, the clay minerals in these shale samples contribute more than 70% of the total inorganic matter. The CO2 adsorption experimental results show that micropores in shales with type III kerogen are mainly formed in organic matter. However, mesopores and macropores are significantly affected by the contents of clay minerals and quartz. The methane isothermal capacity experimental results show that the Langmuir volume, indicating the maximum methane adsorption capacity, of all the shale samples is between 0.78 cm3/g and 9.26 cm3/g. Moreover, methane is mainly adsorbed in micropores and developed in organic matter, whereas the influence of mesopores and macropores on the methane adsorption capacity of shale with type III kerogen is small. At different stages, the influencing factors of methane adsorption capacity are different. When the TOC content is <1.4% or >4.5%, the methane adsorption capacity is positively correlated with the TOC content. When the TOC content is in the range of 1.4–4.5%, clay minerals have obviously positive effects on the methane adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document