scholarly journals Electrochemical Reduction of Carbon Monoxide to Hydrocarbons at Various Metal Electrodes in Aqueous Solution

1987 ◽  
Vol 16 (8) ◽  
pp. 1665-1668 ◽  
Author(s):  
Yoshio Hori ◽  
Akira Murata ◽  
Ryutaro Takahashi ◽  
Shin Suzuki
1978 ◽  
Vol 56 (1) ◽  
pp. 17-23 ◽  
Author(s):  
John R. Duncan ◽  
Graham A. Wright

Suggestions that e−(aq) is involved as a reactant in reduction reactions at metal electrodes are examined. It is shown that an experimental test of the participation of e−(aq) can be devised. The results of this test show that the conventional theory, involving electron transfer directly from the electrode to the species being reduced, provides a better explanation of the reduction process in aqueous solution.


ACS Catalysis ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 4822-4827 ◽  
Author(s):  
Jeremy T. Feaster ◽  
Chuan Shi ◽  
Etosha R. Cave ◽  
Toru Hatsukade ◽  
David N. Abram ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 362-366
Author(s):  
Xiao Chun Wang ◽  
You Jian Jia ◽  
Feng Shi ◽  
Jin Shi

The electrochemical reduction of carbon dioxide (CO2) has been studied on various metal electrodes including main group and transition elements in aqueous solution. Of these electrodes, silver and gold are found to have catalytic activity for the conversion of CO2 to CO with considerably high Faradaic efficiencies. However, no work has been done to evaluate the electrocatalytical property of these two electrodes in the same electrochemical system under the same condition. In present work, we investicate the electrocatalytical property of Ag and Au electrodes in the same electrolysis cell and under the same condition. We found Au electrode exhibits higher current density and higher faradaic efficiency for CO formation than Ag electrode.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2019 ◽  
Vol 23 (04n05) ◽  
pp. 453-461
Author(s):  
Sumana Tawil ◽  
Hathaichanok Seelajaroen ◽  
Amorn Petsom ◽  
Niyazi Serdar Sariciftci ◽  
Patchanita Thamyongkit

A clam-shaped molecule comprising a Zn(II)-porphyrin and a Zn(II)-cyclam is synthesized and characterized. Its electrochemical behavior and catalytic activity for homogeneous electrochemical reduction of carbon dioxide (CO[Formula: see text] are investigated by cyclic voltammetry and compared with those of Zn(II)-meso-tetraphenylporphyrin and Zn(II)-cyclam. Under N2-saturated conditions, cyclic voltammetry of the featured complex has characteristics of its two constituents, but under CO2-saturated conditions, the target compound exhibits significant current enhancement. Iterative reduction under electrochemical conditions indicated the target compound has improved stability relative to Zn(II)-cyclam. Controlled potential electrolysis demonstrates that, without addition of water, methane (CH[Formula: see text] is the only detectable product with 1% Faradaic efficiency (FE). The formation of CH4 is not observed under the catalysis of the Zn(II)-porphyrin benchmark compound, indicating that the CO2-capturing function of the Zn(II)-cyclam unit contributes to the catalysis. Upon addition of 3% v/v water, the electrochemical reduction of CO2 in the presence of the target compound gives carbon monoxide (CO) with 28% FE. Dominance of CO formation under these conditions suggests enhancement of proton-coupled reduction. Integrated action of these Zn(II)-porphyrin and Zn(II)-cyclam units offers a notable example of a molecular catalytic system where the cyclam ring captures and brings CO2 into the proximity of the porphyrin catalysis center.


Sign in / Sign up

Export Citation Format

Share Document