scholarly journals Glass transition temperature and heat capacity change at the glass transition region of polymethylsiloxanes with phenyl groups.

1989 ◽  
pp. 1564-1570
Author(s):  
Joji KUNIYA
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


Author(s):  
Emilio Sideridis ◽  
John Venetis

Dynamic mechanical analysis (DMA) is a versatile technique that complements the information given by the more traditional thermal analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermal mechanical analysis (TMA). Dynamic constants such as storage modulus, loss modulus, and loss factor are temperature dependent and provide information about interfacial bonding between reinforced fibre and polymer matrix of composite material. To study the above mentioned properties at the glass transition region, for unidirectional fibrous composites reinforced with continuous fibers a reliable model was applied. In particular, the composite material was considered as composed of three phases with the intermediate phase between matrix and fibres, the interphase, to have variable properties depending on those of main phases and the mode of preparation of the overall material. The glass transition temperature is defined as the point at which the specific volume versus temperature curve changes abruptly slope marking the region between rubbery polymer and glassy polymer nature. Hence, the behaviour of unidirectional fibrous composites was investigated at this region. Examination of the glass transition temperature, which constitutes an upper limit for the structurally important glassy region through the loss factor, was performed by its consideration as a combination of glass transition temperature of matrix and interphase.


2015 ◽  
Vol 1119 ◽  
pp. 292-295
Author(s):  
Vu Thanh Phuong ◽  
Maria Beatrice Coltelli ◽  
Irene Anguillesi ◽  
Patrizia Cinelli ◽  
Andrea Lazzeri

In order to improve the thermal stability of PLA based materials it was followed the strategy of blending it with a polymer having a higher glass transition temperature such as poly (carbonate) of bisphenol A (PC) . PLA/PC blends with different compositions were by melt extrusion produced also in the presence of an interchange reaction catalyst, tetrabutylammonium tetraphenylborate (TBATPB) and triacetin. The dynamical mechanical thermal characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tan δ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data showed an interesting improvement of thermal stability above the PLA glass transition, this was explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.


2011 ◽  
Vol 1300 ◽  
Author(s):  
Y. Miyauchi ◽  
R. Tamura ◽  
Y. Hiki

AbstractInternal friction (IF) of a metallic glass Zr55Cu30Al10Ni5 has been measured near the glass transition temperature Tg (= 666 K). The measurement is performed by using DMA (TA Instrument) apparatus at a frequency of 0.01 Hz for a specimen stabilized by annealing. The specimen is kept at a constant temperature T, and the IF value Q-1 is measured as a function of time t. A fluctuation of Q-1 with time is seen, and the magnitude of the fluctuation, F(t), is derived from the Q-1-vs-t data. F(t) is Fourier transformed to the frequency spectrum F(f). Such experiment and analyses are carried out at various temperatures near Tg. A characteristic peak (f ~ 10-3 Hz) is found in the spectrum F(f) in the glass transition region.


2021 ◽  
Vol 43 (2) ◽  
pp. 123-132
Author(s):  
N.A. Busko ◽  
◽  
V.K. Grishchenko ◽  
A.V. Barantsova ◽  
N.V. Gudzenko ◽  
...  

The aim of the work was to develop methods for the synthesis and study of the properties of silicon-containing oligomeric azo- and polyazoinitiators based on bis-γ-hydroxypropylpolysiloxane (HPS) and bis-γ-aminopropylpolysiloxane (APS). Silicon-containing oligomeric azoinitiators using HPS were synthesized on the basis of cyclohexanone azo-bis-isobutyrohydrazone (AGN-CH) and bis-γ-hydroxypropylpolysiloxane bifunctional macrodiisocyanate (MDIHPS). MDIHPS was obtained by the interaction of GPS with 2,4 toluene diisocyanate (2,4-TDI). Oligomeric azoinitiators have been obtained, which have the structure RXR and (RX)nR, where R is a propylpolysiloxane block, X is a azo initiator block. For the synthesis of an oligomeric azo initiator based on bis-γ-aminopropyl polysiloxane (APS), a method was first developed for the synthesis of a monomeric azo initiator with terminal oxadiazolinylcarbamanate isocyanate groups (AGN-NCO) by the interaction of AGN-CH and 2,4-TDI at a molar ratio of 1: 2. On the basis of the obtained AGN-NCO and APS at a molar ratio of AGN-NCO: APS = 1: 1, an oligomeric azo initiator (OAI APS-P) was synthesized, which has the structure (RX)nR, where R is a propylpolysiloxane block, X is an azo initiator block. The structures of monomeric and oligomeric azo initiators have been studied by UV and IR spectroscopy, and the kinetic regularities of their synthesis have been calculated. On the basis of oligomeric azo initiators and styrene, block copolymers of the (AB)nA type were obtained by the method of thermal and photoinitiated radical polymerization, where A is a propylpolysiloxane block, B is an oligosyrene block with a constant value of the organosilicon block and a different size of the oligostyrene block. The structure of block copolymers was investigated by IR spectroscopy. It was shown that during photopolymerization, oligostyrene blocks of shorter length are formed than during thermopolymerization, and possible oxidation processes. The study of relaxation transitions by DSC in oligostyrene and propylpolysiloxane blocks of the BCP showed that the common heat capacity curves are the presence of two jumps in the heat capacity at the glass transition temperatures of the polysiloxane and oligostyrene microphase. A slight shift in the glass transition temperature of polysiloxane microphases in BCP towards higher temperatures compared to the homopolymer may be associated with the effect of oligostyrene microphase. With a decrease in the length of the oligosyrene block, a low-temperature shift in the glass transition temperature of oligostyrene blocks relative to the homopolymer and a depression of ∆Cp,2 are observed, which is associated with the suppression of mobility in oligodienic microphases by less mobile propylpolysiloxane blocks.


2015 ◽  
Vol 59 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Sławomir Bakier ◽  
Kamila Goderska ◽  
Krzysztof Mansfeld

Abstract Thermodynamic properties of selected honeys: glass transition temperature (Tg), the change in specifi c heat capacity (ΔCp), and enthalpy (ΔH) were analysed using differential scanning calorimetry (DSC) in relation to the composition i.e. water and sugar content. Glass transition temperatures (Tg) of various types of honey differed significantly (p<0.05) and ranged from -49.7°C (polyfloral) to -34.8°C (sunflower). There was a strong correlation between the Tg values and the moisture content in honey (r = -0.94). The degree of crystallisation of the honey also influenced the Tg values. It has been shown that the presence or absence of sugar crystals influenced the glass transition temperature. For the decrystallised honeys, the Tg values were 6 to 11°C lower than for the crystallised honeys. The more crystallised a honey was, the greater the temperature difference was between the decrystallised and crystallized honey. In conclusion, to obtain reliable DSC results, it is crucial to measure the glass transition after the complete liquefaction of honey.


Sign in / Sign up

Export Citation Format

Share Document