Modification of the Mechanical Behavior in the Glass Transition Region of Poly(lactic acid) (PLA) through Catalyzed Reactive Extrusion with Poly(carbonate) (PC)

2015 ◽  
Vol 1119 ◽  
pp. 292-295
Author(s):  
Vu Thanh Phuong ◽  
Maria Beatrice Coltelli ◽  
Irene Anguillesi ◽  
Patrizia Cinelli ◽  
Andrea Lazzeri

In order to improve the thermal stability of PLA based materials it was followed the strategy of blending it with a polymer having a higher glass transition temperature such as poly (carbonate) of bisphenol A (PC) . PLA/PC blends with different compositions were by melt extrusion produced also in the presence of an interchange reaction catalyst, tetrabutylammonium tetraphenylborate (TBATPB) and triacetin. The dynamical mechanical thermal characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tan δ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data showed an interesting improvement of thermal stability above the PLA glass transition, this was explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.

Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 393 ◽  
Author(s):  
Sudakar Padmanaban ◽  
Sivanesan Dharmalingam ◽  
Sungho Yoon

The terpolymerization of propylene oxide (PO), CO2, and a lactone is one of the prominent sustainable procedures for synthesizing thermoplastic materials at an industrial scale. Herein, the one-pot terpolymerization of PO, CO2, and β-butyrolactone (BBL) was achieved for the first time using a heterogeneous nano-sized catalyst: zinc glutarate (ZnGA-20). The reactivity of both PO and BBL increased with the CO2 pressure, and the polyester content of the terpolymer poly (carbonate-co-ester) could be tuned by controlling the infeed ratio of PO to BBL. When the polyester content increased, the thermal stability of the polymers increased, whereas the glass transition temperature (Tg) decreased.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


Author(s):  
Emilio Sideridis ◽  
John Venetis

Dynamic mechanical analysis (DMA) is a versatile technique that complements the information given by the more traditional thermal analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermal mechanical analysis (TMA). Dynamic constants such as storage modulus, loss modulus, and loss factor are temperature dependent and provide information about interfacial bonding between reinforced fibre and polymer matrix of composite material. To study the above mentioned properties at the glass transition region, for unidirectional fibrous composites reinforced with continuous fibers a reliable model was applied. In particular, the composite material was considered as composed of three phases with the intermediate phase between matrix and fibres, the interphase, to have variable properties depending on those of main phases and the mode of preparation of the overall material. The glass transition temperature is defined as the point at which the specific volume versus temperature curve changes abruptly slope marking the region between rubbery polymer and glassy polymer nature. Hence, the behaviour of unidirectional fibrous composites was investigated at this region. Examination of the glass transition temperature, which constitutes an upper limit for the structurally important glassy region through the loss factor, was performed by its consideration as a combination of glass transition temperature of matrix and interphase.


2011 ◽  
Vol 1300 ◽  
Author(s):  
Y. Miyauchi ◽  
R. Tamura ◽  
Y. Hiki

AbstractInternal friction (IF) of a metallic glass Zr55Cu30Al10Ni5 has been measured near the glass transition temperature Tg (= 666 K). The measurement is performed by using DMA (TA Instrument) apparatus at a frequency of 0.01 Hz for a specimen stabilized by annealing. The specimen is kept at a constant temperature T, and the IF value Q-1 is measured as a function of time t. A fluctuation of Q-1 with time is seen, and the magnitude of the fluctuation, F(t), is derived from the Q-1-vs-t data. F(t) is Fourier transformed to the frequency spectrum F(f). Such experiment and analyses are carried out at various temperatures near Tg. A characteristic peak (f ~ 10-3 Hz) is found in the spectrum F(f) in the glass transition region.


Author(s):  
Takahisa Omata ◽  
Aman Sharma ◽  
Takuya Kinoshita ◽  
Issei Suzuki ◽  
Tomohiro Ishiyama ◽  
...  

In this study, the effect of GeO2 on the thermal stability and proton mobility (μH) of proton-conducting phosphate glasses was experimentally investigated using 22HO1/2−3NaO1/2−(12−x)LaO3/2−xGeO2−63PO5/2 glasses. Increasing glass transition temperature (Tg)...


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000196-000200 ◽  
Author(s):  
Kenji Okamoto ◽  
Yuji Takematsu ◽  
Miyako Hitomi ◽  
Yoshinari Ikeda ◽  
Yoshikazu Takahashi

There is a demand to improve the thermal stability of epoxy molding resins used in the power module of SiC power chips operating at temperatures of 200°C or more. This paper describes a technique for increasing the thermal stability of the resin by decreasing molecular motion through the addition of nanofiller. The experimental results showed that the glass transition temperature (Tg) of the epoxy resin increased by approximately 30°C when the silica nanofiller was added. The epoxy resin added nanofiller was investigated in order to achieve the operation temperature 200°C of power module.


Sign in / Sign up

Export Citation Format

Share Document