scholarly journals Application of the Solid Dispersion Method to the Controlled Release of Medicine. IV. Precise Control of the Release Rate of a Water Soluble Medicine by Using the Solid Dispersion Method Applying the Difference in the Molecular Weight of a Polymer.

1993 ◽  
Vol 41 (5) ◽  
pp. 933-936 ◽  
Author(s):  
Hiroshi YUASA ◽  
Tetsuya OZEKI ◽  
Yoshio KANAYA ◽  
Katsutoshi OISHI
1991 ◽  
Vol 39 (2) ◽  
pp. 465-467 ◽  
Author(s):  
Hiroshi YUASA ◽  
Tetsuya OZEKI ◽  
Yoshio KANAYA ◽  
Katsutoshi OISHI ◽  
Tadashi OYAKE

2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Netty Widyastuti ◽  
Teguh Baruji ◽  
Henky Isnawan ◽  
Priyo Wahyudi ◽  
Donowati Donowati

Beta glucan is a polysaccharide compound, generally not soluble inwater and resistant to acid. Beta glucan is used as an immunomodulator (enhancing the immune system) in mammals is usually a beta-glucan soluble in water, easily absorbed and has a low molecular weight. Several example of beta-glucan such as cellulose (β-1 ,4-glucan), lentinan (β-1 0.6-glucan) and (β-1 ,3-glucan), pleuran (β-1, 6 and β-1 ,3-glucan) are isolated from species of fungi Basidiomycota include mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes).The purpose of thisresearch activity is to obtain beta-glucan compound that can be dissolved in water and in alkali derived from fungi Basidiomycota, i.e, Oyster mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes). The result of beta-glucan compared to characterize the resulting beta glucan that is molecular structure . The difference of beta glucan extraction is based on the differences in solubility of beta-glucan. Beta glucan could be water soluble and insoluble water.


2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qingyun Zeng ◽  
Liquan Ou ◽  
Guowei Zhao ◽  
Ping Cai ◽  
Zhenggen Liao ◽  
...  

Solid dispersion (SD) is the effective approach to improve the dissolution rate and bioavailability of class II drugs with low water solubility and high tissue permeability in the Biopharmaceutics Classification System. This study investigated the effects of polyethylene glycol (PEG) molecular weight in carrier material PEG palmitate on the properties of andrographolide (AG)-SD. We prepared SDs containing the poorly water-soluble drug AG by the freeze-drying method. The SDs were manufactured from two different polymers, PEG4000 palmitate and PEG8000 palmitate. The physicochemical properties of the AG-SDs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, dissolution testing, and so on. We found that AG-PEG4000 palmitate-SD and AG-PEG8000 palmitate-SD were similar in the surface morphology, specific surface area, and pore volume. Compared with the AG-PEG4000 palmitate-SD, the intermolecular interaction between PEG8000 palmitate and AG was stronger, and the thermal stability of AG-PEG8000 palmitate-SD was better. In the meanwhile, the AG relative crystallinity was lower and the AG dissolution rate was faster in AG-PEG8000 palmitate-SD. The results demonstrate that the increasing PEG molecular weight in the PEG palmitate can improve the compatibility between the poorly water-soluble drug and carrier material, which is beneficial to improve the SD thermal stability and increases the dissolution rate of poorly water-soluble drug in the SD.


Sign in / Sign up

Export Citation Format

Share Document