DOES THE GAS EXCHANGE ANAEROBIC THRESHOLD OCCUR AT AN ABSOLUTE BLOOD LACTATE CONCENTRATION OF 2 OR 4 mM?

1982 ◽  
Vol 14 (2) ◽  
pp. 114 ◽  
Author(s):  
J. A. Davis ◽  
V. J. Caiozzo ◽  
J. F. Ellis ◽  
J. L. Azus ◽  
R. Vandagriff ◽  
...  
1983 ◽  
Vol 04 (02) ◽  
pp. 89-93 ◽  
Author(s):  
J. Davis ◽  
V. Caiozzo ◽  
N. Lamarra ◽  
J. Ellis ◽  
R. Vandagriff ◽  
...  

1981 ◽  
Vol 51 (4) ◽  
pp. 840-844 ◽  
Author(s):  
B. A. Stamford ◽  
A. Weltman ◽  
R. Moffatt ◽  
S. Sady

The purpose of this study was to determine the effects of resting and exercise recovery above [70% of maximum O2 uptake (VO2 max)] and below [40% of VO2 max] anaerobic threshold (AT) on blood lactate disappearance following maximal exercise. Blood lactate concentrations at rest (0.9 mM) and during exercise at 40% (1.3 mM) and 70% (3.5 mM) of VO2 max without preceding maximal exercise were determined on separate occasions and represented base lines for each condition. The rate of blood lactate disappearance from peak values was ascertained from single-component exponential curves fit for each individual subject for each condition using both the determined and resting base lines. When determined base lines were utilized, there were no significant differences in curve parameters between the 40 and 70% of VO2 max recoveries, and both were significantly different from the resting recovery. When a resting base line (0.9 mM) was utilized for all conditions, 40% of VO2 max demonstrated a significantly faster half time than either 70% of VO2 max or resting recovery. No differences were found between 70% of VO2 max and resting recovery. It was concluded that interpretation of the effectiveness of exercise recovery above and below AT with respect to blood lactate disappearance is influenced by the base-line blood lactate concentration utilized in the calculation of exponential half times.


1985 ◽  
Vol 58 (6) ◽  
pp. 2082-2089 ◽  
Author(s):  
L. B. Gladden ◽  
J. W. Yates ◽  
R. W. Stremel ◽  
B. A. Stamford

Twenty-four coded graph sets of gas exchange variables and blood lactate concentration (LA) plotted against time at 15-s intervals were analyzed by nine evaluators who determined the gas exchange (ATGE) and LA (ATLA) anaerobic thresholds. In addition, ATGE and ATLA were determined by a linear regression computer program. Agreement between ATGE and ATLA was poor; the median intraclass correlation coefficient (ri) was 0.53. Among evaluators, ATLA agreement (median ri = 0.81) was better than ATGE agreement (median ri = 0.70). In general, the ability of any evaluator to choose similar values from duplicate plots for either ATGE (median ri = 0.97) or ATLA (median ri = 0.995) was good. There was better agreement between the mean ATLA of the evaluators and the computer ATLA (ComLA) (ri = 0.88) than between the mean ATGE of the evaluators and the computer ATGE (ComVE), (ri = 0.58). Agreement between ComVE and ComLA was poor (ri = 0.29). These results suggest that ATGE does not accurately predict ATLA and that different evaluators choose different thresholds from the same data. Further assessment of the validity and precision of ATGE based on breath-by-breath and minute-by-minute data is needed.


Author(s):  
Tomasz Tytus Gabrys ◽  
Arkadiusz Stanula ◽  
Urszula Szmatlan-Gabryś

The study aimed to determine the differences between exercise intensities at the anaerobic threshold values (VAT) calculated with methods of lactate curve analysis such as LTvisual, LTloglog, LT4.0, LTΔ1, and LTD-max, and to build regression equations that allow athletic training specialists to compare VAT values obtained from LTvisual, LTloglog, LTΔ1, LTD-max with that calculated with LT4.0. The sample analysed during the study consisted of 19 judoka and 22 MMA practitioners in a preparation period for competition. Each of the two disciplines has its own hierarchy of VAT values. The analysis aimed to determine the effect of the athletic discipline factor and of the method factor on VAT values. Results: The coefficient of variation (CV) values obtained indicate that the effective exercise intensities have bigger variation in judoka aerobic endurance training. VAT values assessed for judoka using different methods for analysing the blood lactate concentration curve are more consistent than in MMA competitors. Conclusions: Judo and MMA competitors have their specific hierarchies of running velocities at the anaerobic threshold, with both the athletic discipline factor and the method factor having an interaction effect on the VAT level. VAT levels assessed from the different methods used to analyse the blood lactate concentration curve are more consistent (ANOM) in judoka than in MMA practitioners.


2020 ◽  
Vol 19 (1) ◽  
pp. 32
Author(s):  
Gustavo Taques Marczynski ◽  
Luís Carlos Zattar Coelho ◽  
Leonardo Emmanuel De Medeiros Lima ◽  
Rodrigo Pereira Da Silva ◽  
Dilmar Pinto Guedes Jr ◽  
...  

The aim of this study was to analyze the influence of two velocities of execution relative to blood lactate concentration in strength training exercise until the momentary concentric failure. Fifteen men (29.1 ± 5.9 years), trained, participated in the experiment. The volunteers performed three bench press sessions, with an interval of 48 hours between them. At the first session, individuals determined loads through the 10-12 RMs test. In the following two sessions, three series with 90 seconds of interval were performed, in the second session slow execution speed (cadence 3030) and later in the third session fast speed (cadence 1010). For statistical analysis, the Student-T test was used for an independent sample study and considered the value of probability (p) ≤ 0.05 statistically significant. By comparing the number of repetitions and time under tension of the two runs, all series compared to the first presented significant reductions (p < 0.05). The total work volume was higher with the fast speed (p < 0.05). The study revealed that rapid velocities (cadence 1010) present a higher concentration of blood lactate when compared to slow runs (cadence 3030). The blood lactate concentration, in maximum repetitions, is affected by the speed of execution.Keywords: resistance training, cadence, blood lactate.


Sign in / Sign up

Export Citation Format

Share Document