THE EFFECT OF PRIOR HIGH INTENSITY EXERCISE ON MINUTE VENTILATION AND CARBON DIOXIDE OUTPUT DURING STEADY-STATE EXCERCISE

1984 ◽  
Vol 16 (2) ◽  
pp. 179
Author(s):  
D. J. Berriman ◽  
V. J. Caiozzo ◽  
J. A. Davis ◽  
R. V. Vandagriff ◽  
C. A. Prietto ◽  
...  
2019 ◽  
Vol 45 (6) ◽  
Author(s):  
Fabio Perrotta ◽  
Antonio Cennamo ◽  
Francesco Saverio Cerqua ◽  
Francesco Stefanelli ◽  
Andrea Bianco ◽  
...  

ABSTRACT Objective: Preoperative functional evaluation is central to optimizing the identification of patients with non-small cell lung cancer (NSCLC) who are candidates for surgery. The minute ventilation/carbon dioxide output (VE/VCO2) slope has proven to be a predictor of surgical complications and mortality. Pulmonary rehabilitation programs (PRPs) could influence short-term outcomes in patients with COPD undergoing lung resection. Our objective was to evaluate the effects of a PRP on the VE/VCO2 slope in a cohort of patients with COPD undergoing lung resection for NSCLC. Methods: We retrospectively evaluated 25 consecutive patients with COPD participating in a three-week high-intensity PRP prior to undergoing lung surgery for NSCLC, between December of 2015 and January of 2017. Patients underwent complete functional assessment, including spirometry, DLCO measurement, and cardiopulmonary exercise testing. Results: There were no significant differences between the mean pre- and post-PRP values (% of predicted) for FEV1 (61.5 ± 22.0% vs. 62.0 ± 21.1%) and DLCO (67.2 ± 18.1% vs. 67.5 ± 13.2%). Conversely, there were significant improvements in the mean peak oxygen uptake (from 14.7 ± 2.5 to 18.2 ± 2.7 mL/kg per min; p < 0.001) and VE/VCO2 slope (from 32.0 ± 2.8 to 30.1 ± 4.0; p < 0.01). Conclusions: Our results indicate that a high-intensity PRP can improve ventilatory efficiency in patients with COPD undergoing lung resection for NSCLC. Further comprehensive prospective studies are required to corroborate these preliminary results.


Author(s):  
William J.M. Kinnear ◽  
James H. Hull

This chapter describes how acidaemia stimulates ventilation in the later stages of a cardiopulmonary exercise test (CPET). This happens after the anaerobic threshold, once the capacity of the blood to buffer lactic acid has been used up. The respiratory compensation point (RCP) can be identified from an increase in the slope when minute ventilation (VE) is plotted against carbon dioxide output (VCO2), or from a rise in the ventilatory equivalents for carbon dioxide (VeqCO2). The presence of a clear RCP indicates that the subject has made a fairly maximal effort during the CPET. An RCP also argues against significant lung disease, since it implies the ability to increase ventilation in response to acidaemia.


2011 ◽  
Vol 110 (6) ◽  
pp. 1598-1606 ◽  
Author(s):  
Scott R. Murgatroyd ◽  
Carrie Ferguson ◽  
Susan A. Ward ◽  
Brian J. Whipp ◽  
Harry B. Rossiter

Tolerance to high-intensity constant-power (P) exercise is well described by a hyperbola with two parameters: a curvature constant (W′) and power asymptote termed “critical power” (CP). Since the ability to sustain exercise is closely related to the ability to meet the ATP demand in a steady state, we reasoned that pulmonary O2 uptake (V̇o2) kinetics would relate to the P-tolerable duration (tlim) parameters. We hypothesized that 1) the fundamental time constant (τV̇o2) would relate inversely to CP; and 2) the slow-component magnitude (ΔV̇o2sc) would relate directly to W′. Fourteen healthy men performed cycle ergometry protocols to the limit of tolerance: 1) an incremental ramp test; 2) a series of constant-P tests to determine V̇o2max, CP, and W′; and 3) repeated constant-P tests (WR6) normalized to a 6 min tlim for τV̇o2 and ΔV̇o2sc estimation. The WR6 tlim averaged 365 ± 16 s, and V̇o2max (4.18 ± 0.49 l/min) was achieved in every case. CP (range: 171–294 W) was inversely correlated with τV̇o2 (18–38 s; R2 = 0.90), and W′ (12.8–29.9 kJ) was directly correlated with ΔV̇o2sc (0.42–0.96 l/min; R2 = 0.76). These findings support the notions that 1) rapid V̇o2 adaptation at exercise onset allows a steady state to be achieved at higher work rates compared with when V̇o2 kinetics are slower; and 2) exercise exceeding this limit initiates a “fatigue cascade” linking W′ to a progressive increase in the O2 cost of power production (V̇o2sc), which, if continued, results in attainment of V̇o2max and exercise intolerance. Collectively, these data implicate V̇o2 kinetics as a key determinant of high-intensity exercise tolerance in humans.


Author(s):  
Christophe Van Laethem ◽  
Johan De Sutter ◽  
Wim Peersman ◽  
Patrick Calders

Background The oxygen uptake efficiency slope (OUES) is a newer ventilatory exercise parameter, used in the evaluation of healthy participants and patients with cardiovascular disease. However, few data about the reliability and reproducibility of OUES are available. Our study assessed intratest reliability and test-retest reproducibility of OUES in healthy participants. Design and methods Eighteen participants (age 28 ± 6 years, BMI 22.1 ± 1.9 kg/m2, 10 men) performed two identical maximal exercise tests on a bicycle ergometer. To assess test-retest reproducibility, we performed Bland-Altman analysis and calculated the coefficient of repeatability of the main ventilatory variables. Results OUES remained stable during the second part of the exercise test. Mean values varied 2.4 ± 4.0% between OUES calculated at 70% (OUES70) and at 100% of exercise duration. Mean variation decreased to 1.4 ± 2.3% when OUES was calculated at 90% of exercise duration (OUES90). The Bland-Altman 95% limits of agreement for OUES90 were +3 and –6%, those for OUES70 were +11 and –8%. The coefficient of repeatability for OUES was 597 ml/min or 18.7% of the average value of repeated OUES measurements. These results were similar to those of peak oxygen uptake and minute ventilation/carbon dioxide output. However, the test-retest reproducibility for submaximal-derived values of OUES was lower, as we noted higher coefficients of repeatability for OUES90 and OUES70, increasing up to 27% of the average of repeated values. Conclusion OUES shows excellent intratest reliability and has a test-retest reproducibility that is similar to that of peak oxygen uptake and minute ventilation/carbon dioxide output slope. However, its reproducibility becomes higher when it is calculated from increasing levels of achieved exercise intensity.


2012 ◽  
Vol 93 (6) ◽  
pp. 1802-1806 ◽  
Author(s):  
Alessandro Brunelli ◽  
Romualdo Belardinelli ◽  
Cecilia Pompili ◽  
Francesco Xiumé ◽  
Majed Refai ◽  
...  

2020 ◽  
Author(s):  
Haoyan Wang ◽  
Fang Lin ◽  
Shan Nie ◽  
Ranran Zhao ◽  
Min Cao ◽  
...  

Abstract Background: Ventilatory inefficiency is known to be a contributor to exercise intolerance in chronic obstructive pulmonary disease (COPD). The intercept of the minute ventilation (V̇E) vs. carbon dioxide output (V̇CO2) plot is a key ventilator inefficiency parameter. However, its relationships with lung hyperinflation (LH) and airflow limitation are not known. This study aimed to evaluate the correlations between the V̇E/V̇CO2 intercept and LH in COPD to determine its utility as an index of functional impairment.Methods: We conducted a retrospective analysis of data from 53 COPD patients and 14 healthy controls performed incremental cardiopulmonary exercise tests and resting pulmonary function. Ventilatory inefficiency was represented by parameters reflecting the V̇E/V̇CO2 nadir and slope (linear region), and intercept of the V̇E/V̇CO2 plot. Their correlations with measures of LH and airflow limitation were evaluated.Results: Compared to the control, the slope (30.58±3.62) and intercept (4.85±1.11) higher in COPDstages1-2, leading to a higher nadir (31.47±4.47) (p<0.05). Despite an even higher intercept in COPDstages3-4 (7.16±1.41), the slope diminished with disease progression (from 30.58±3.62 in COPDstages1-2 to 28.36±4.58 in COPDstages3-4). Compared to the V̇E/V̇CO2 nadir and V̇E/V̇CO2 slope, the intercept was better correlated with peak V̇E/maximal voluntary ventilation (MVV) (r=0.489, p<0.001) and peak V̇O2/watt (r=0.354, p=0.003). The intercept was also significantly correlated with RV/TLC (r=0.588, p<0.001), IC/TLC (r=-0.574, p<0.001), peak VT/TLC (r=-0.585, p<0.001); and airflow limitation forced expiratory volume in 1s (FEV1) % predicted (r=-0.606, p<0.001) and FEV1/forced vital capacity (FVC) (r=-0.629, p<0.001).Conclusion: V̇E/V̇CO2intercept was consistently better correlated with worsening static and dynamic lung hyperinflation and airflow limitation in COPD. V̇E/V̇CO2 intercept emerged as a useful index of ventilatory inefficiency across the severity spectrum of COPD patients.


2003 ◽  
Vol 99 (4) ◽  
pp. 779-787 ◽  
Author(s):  
Thomas Bouillon ◽  
Joergen Bruhn ◽  
Lucian Radu-Radulescu ◽  
Corina Andresen ◽  
Carol Cohane ◽  
...  

Background The C50 of remifentanil for ventilatory depression has been previously determined using inspired carbon dioxide and stimulated ventilation, which may not describe the clinically relevant situation in which ventilatory depression occurs in the absence of inspired carbon dioxide. The authors applied indirect effect modeling to non-steady state Paco2 data in the absence of inspired carbon dioxide during and after administration of remifentanil. Methods Ten volunteers underwent determination of carbon dioxide responsiveness using a rebreathing design, and a model was fit to the end-expiratory carbon dioxide and minute ventilation. Afterwards, the volunteers received remifentanil in a stepwise ascending pattern using a computer-controlled infusion pump until significant ventilatory depression occurred (end-tidal carbon dioxide [Peco2] &gt; 65 mmHg and/or imminent apnea). Thereafter, the concentration was reduced to 1 ng/ml. Remifentanil pharmacokinetics and Paco2 were determined from frequent arterial blood samples. An indirect response model was used to describe the Paco2 time course as a function of remifentanil concentration. Results The time course of hypercarbia after administration of remifentanil was well described by the following pharmacodynamic parameters: F (gain of the carbon dioxide response), 4.30; ke0 carbon dioxide, 0.92 min-1; baseline Paco2, 42.4 mmHg; baseline minute ventilation, 7.06 l/min; kel,CO2, 0.08 min-1; C50 for ventilatory depression, 0.92 ng/ml; Hill coefficient, 1.25. Conclusion Remifentanil is a potent ventilatory depressant. Simulations demonstrated that remifentanil concentrations well tolerated in the steady state will cause a clinically significant hypoventilation following bolus administration, confirming the acute risk of bolus administration of fast-acting opioids in spontaneously breathing patients.


Sign in / Sign up

Export Citation Format

Share Document