Effects Of Acute Exercise On Gene Expression Profiles In White Blood Cells

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S336
Author(s):  
Frank C. Mooren ◽  
Petra Buettner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Klaus Völker ◽  
...  
2005 ◽  
Vol 37 (Supplement) ◽  
pp. S336
Author(s):  
Frank C. Mooren ◽  
Petra Buettner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Klaus V??lker ◽  
...  

2007 ◽  
Vol 102 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Petra Büttner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Harald Funke ◽  
Frank C. Mooren

White blood cells (WBCs) express tens of thousands of genes, whose expression levels are modified by genetic and external factors. The purpose of the present study was to investigate the effects of acute exercise on gene expression profiles (GEPs) of WBCs and to identify suitable genes that may serve as surrogate markers for monitoring exercise and training load. Five male participants performed an exhaustive treadmill test (ET) at 80% of their maximal O2uptake (V̇o2 max) and a moderate treadmill test (MT) at 60% V̇o2 maxfor exactly the same time ∼2 wk later. WBCs were isolated by the erythrocyte lysis method. GEPs were measured using the Affymetrix GeneChip technology. After scaling, normalization, and filtering, groupwise comparisons of gene expression intensities were performed, and several measurements were validated by real-time PCR. We found 450 genes upregulated and 150 downregulated (>1.5-fold change; ANOVA with Benjamini-Hochberg correction, P < 0.05) after ET that were closely associated with the gene ontology lists “response to stress” and “inflammatory response”. Analysis of mean expression levels after MT showed that the extent of up- and downregulation was workload dependent. The genes for the stress (heat shock) proteins HSPA1A and HSPH1 and for the matrix metalloproteinase MMP-9 showed the most prominent increases, whereas the YES1 oncogene (YES1) and CD160 (BY55) were most strongly reduced. Despite different methodological approaches used, the consistency of our results with the expression data of another study (Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, Heck JD, Hatfield GW, Cooper DM. J Appl Physiol 97: 1461–1469, 2004) suggests that expression fingerprints are useful tools for monitoring exercise and training loads and thereby help to avoid training-associated health risks.


2012 ◽  
Vol 178 (3) ◽  
pp. 138 ◽  
Author(s):  
Heide Kirschenlohr ◽  
Peter Ellis ◽  
Robin Hesketh ◽  
James Metcalfe

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah E. Moorey ◽  
Bailey N. Walker ◽  
Michelle F. Elmore ◽  
Joshua B. Elmore ◽  
Soren P. Rodning ◽  
...  

Abstract Infertility is a challenging phenomenon in cattle that reduces the sustainability of beef production worldwide. Here, we tested the hypothesis that gene expression profiles of protein-coding genes expressed in peripheral white blood cells (PWBCs), and circulating micro RNAs in plasma, are associated with female fertility, measured by pregnancy outcome. We drew blood samples from 17 heifers on the day of artificial insemination and analyzed transcript abundance for 10,496 genes in PWBCs and 290 circulating micro RNAs. The females were later classified as pregnant to artificial insemination, pregnant to natural breeding or not pregnant. We identified 1860 genes producing significant differential coexpression (eFDR < 0.002) based on pregnancy outcome. Additionally, 237 micro RNAs and 2274 genes in PWBCs presented differential coexpression based on pregnancy outcome. Furthermore, using a machine learning prediction algorithm we detected a subset of genes whose abundance could be used for blind categorization of pregnancy outcome. Our results provide strong evidence that transcript abundance in circulating white blood cells is associated with fertility in heifers.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 729-729 ◽  
Author(s):  
Laura Tabellini ◽  
Ming-Tseh Lin ◽  
Wenhong Fan ◽  
Era Pogosova-Agadjanyan ◽  
Bart Stephens ◽  
...  

Abstract To better understand the cellular events that precede onset of clinically significant acute GVHD, a complication of allogeneic HSCT, we compared global gene expression profiles in patients 3 (days 18–22) and 4 (days 28–32) weeks after transplant. Patients in this study underwent myeloablative-conditioning regimen prior to receiving a T cell replete PBSCT from a related (n=9) or unrelated donor (5 HLA matched and 4 mismatched). Blood was obtained prospectively at scheduled times (prior to administration of glucocorticosteroids). RNA was isolated from nucleated blood cells and biotin-labeled cRNA hybridized on Affymetrix HG-U133A chips. MAS 5.0 software was used to extract gene expression values. We initially compared gene expression profiles between 15 patients 3 weeks post-HSCT and 10 normal controls. A total of 1176 genes were differentially expressed with statistical criterion of NFD (number of false discovery) equal to 10. Gene profiles for these 1176 genes were compared between 8 patients who subsequently developed GVHD within 1–5 days and 7 patients who remained GVHD free for 90 days. A limited number of genes were differentially expressed with NFD=1: 3 genes in GVHD patients showed increased expression and 6 showed decreased expression. A second set of experiments was performed to compare changes occurring within individual patients over an interval of 7 days (between weeks 3 and 4) prior to diagnosis of clinically significant GVHD (onset between days 27–32). We used a pair-wise comparison with selection criterion NFD=1. Increased expression prior to GVHD was observed in 55 genes and decreased expression in 88 genes. Approximately 50 of these genes were associated with inflammation and cellular stress response. Using the same statistical criterion we compared gene profiles between weeks 3 and 4 for 3 patients who remained GVHD-free for at least 90 days. Fewer changes were observed with increased expression occurring in 6 genes and decreased expression in 14 genes. These differentially expressed genes did not overlap with the candidate genes associated with the development of GVHD. Genes showing expression changes in GVHD included: Increased Decreased Inflamamtory Response IFN-α10, IL8, IL17 Transcription Factors NFATC1 GATA3 Cell Surface/Signal Transduction CD6, CD7, CD8, TCR-interacting molecule, MAP4K1, TNFRSF25, Effectors Molecules GRMM AICD/Apoptosis TOSO, BAX Cellular Stress Response DDAH1 DLAT, PKC1, COX5B These results suggest that extensive complex gene expression changes occur among nucleated blood cells during the early post-transplant period presumably due to extensive alterations in cellular activation occurring during reconstitution. The preliminary results of the longitudinal analysis of changes occurring within individual patients indicate that early post-transplant studies are feasible and that they may be informative for yielding insight into the molecular events associated with development of clinically significant GVHD. These data also indicate a paradoxical decrease in certain T cell associated genes in GVHD. However alloimmune induced T cell activation may lead to AICD and previous studies have demonstrated increased apoptosis among peripheral blood T cells in GVHD patients. Further studies including gene expression profiling of isolated T cells will be necessary to determine if this approach can be useful in identifying a molecular “signature” for GVHD that may be useful for diagnosis and monitoring.


Sign in / Sign up

Export Citation Format

Share Document