Exercise affects the gene expression profiles of human white blood cells

2007 ◽  
Vol 102 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Petra Büttner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Harald Funke ◽  
Frank C. Mooren

White blood cells (WBCs) express tens of thousands of genes, whose expression levels are modified by genetic and external factors. The purpose of the present study was to investigate the effects of acute exercise on gene expression profiles (GEPs) of WBCs and to identify suitable genes that may serve as surrogate markers for monitoring exercise and training load. Five male participants performed an exhaustive treadmill test (ET) at 80% of their maximal O2uptake (V̇o2 max) and a moderate treadmill test (MT) at 60% V̇o2 maxfor exactly the same time ∼2 wk later. WBCs were isolated by the erythrocyte lysis method. GEPs were measured using the Affymetrix GeneChip technology. After scaling, normalization, and filtering, groupwise comparisons of gene expression intensities were performed, and several measurements were validated by real-time PCR. We found 450 genes upregulated and 150 downregulated (>1.5-fold change; ANOVA with Benjamini-Hochberg correction, P < 0.05) after ET that were closely associated with the gene ontology lists “response to stress” and “inflammatory response”. Analysis of mean expression levels after MT showed that the extent of up- and downregulation was workload dependent. The genes for the stress (heat shock) proteins HSPA1A and HSPH1 and for the matrix metalloproteinase MMP-9 showed the most prominent increases, whereas the YES1 oncogene (YES1) and CD160 (BY55) were most strongly reduced. Despite different methodological approaches used, the consistency of our results with the expression data of another study (Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, Heck JD, Hatfield GW, Cooper DM. J Appl Physiol 97: 1461–1469, 2004) suggests that expression fingerprints are useful tools for monitoring exercise and training loads and thereby help to avoid training-associated health risks.

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S336
Author(s):  
Frank C. Mooren ◽  
Petra Buettner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Klaus Völker ◽  
...  

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S336
Author(s):  
Frank C. Mooren ◽  
Petra Buettner ◽  
Sandy Mosig ◽  
Anja Lechtermann ◽  
Klaus V??lker ◽  
...  

2012 ◽  
Vol 178 (3) ◽  
pp. 138 ◽  
Author(s):  
Heide Kirschenlohr ◽  
Peter Ellis ◽  
Robin Hesketh ◽  
James Metcalfe

2019 ◽  
Vol 21 (1) ◽  
pp. 295
Author(s):  
Rebeca González-Fernández ◽  
Rita Martín-Ramírez ◽  
Deborah Rotoli ◽  
Jairo Hernández ◽  
Frederick Naftolin ◽  
...  

Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes, and histones to change cellular protein localization and function. In mammals, there are seven sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging, degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte donors (OD; control group). Study 1: sirtuins genes’ expression levels and correlations with age and IVF parameters in women with no ovarian factor. We found significantly higher expression levels of SIRT1, SIRT2 and SIRT5 in patients ≥40 years old than in OD and in women between 27 and 39 years old with tubal or male factor, and no ovarian factor (NOF). Only SIRT2, SIRT5 and SIRT7 expression correlated with age. Study 2: sirtuin genes’ expression in women poor responders (PR), endometriosis (EM) and polycystic ovarian syndrome. Compared to NOF controls, we found higher SIRT2 gene expression in all diagnostic groups while SIRT3, SIRT5, SIRT6 and SIRT7 expression were higher only in PR. Related to clinical parameters SIRT1, SIRT6 and SIRT7 correlate positively with FSH and LH doses administered in EM patients. The number of mature oocytes retrieved in PR is positively correlated with the expression levels of SIRT3, SIRT4 and SIRT5. These data suggest that cellular physiopathology in PR’s follicle may be associated with cumulative DNA damage, indicating that further studies are necessary.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah E. Moorey ◽  
Bailey N. Walker ◽  
Michelle F. Elmore ◽  
Joshua B. Elmore ◽  
Soren P. Rodning ◽  
...  

Abstract Infertility is a challenging phenomenon in cattle that reduces the sustainability of beef production worldwide. Here, we tested the hypothesis that gene expression profiles of protein-coding genes expressed in peripheral white blood cells (PWBCs), and circulating micro RNAs in plasma, are associated with female fertility, measured by pregnancy outcome. We drew blood samples from 17 heifers on the day of artificial insemination and analyzed transcript abundance for 10,496 genes in PWBCs and 290 circulating micro RNAs. The females were later classified as pregnant to artificial insemination, pregnant to natural breeding or not pregnant. We identified 1860 genes producing significant differential coexpression (eFDR < 0.002) based on pregnancy outcome. Additionally, 237 micro RNAs and 2274 genes in PWBCs presented differential coexpression based on pregnancy outcome. Furthermore, using a machine learning prediction algorithm we detected a subset of genes whose abundance could be used for blind categorization of pregnancy outcome. Our results provide strong evidence that transcript abundance in circulating white blood cells is associated with fertility in heifers.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chung-Min Kang ◽  
Seong-Oh Kim ◽  
Mijeong Jeon ◽  
Hyung-Jun Choi ◽  
Han-Sung Jung ◽  
...  

The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n=9) and DFs (n=9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors includingSOX2,KLF4, andC-MYCwere58.5±26.3,12.4±3.5, and12.2±1.9times higher in gingiva andVCAM1(CD146) andALCAM(CD166) were33.5±6.9and4.3±0.8times higher in DFs. Genes related to MSCs markers includingCD13,CD34,CD73,CD90, andCD105were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1367-1367
Author(s):  
Christine Gilling ◽  
Amit Mittal ◽  
Vincent Nganga ◽  
Vicky Palmer ◽  
Dennis D. Weisenburger ◽  
...  

Abstract Abstract 1367 Previously, we have shown that gene expression profiles (GEP) of CLL cells from lymph nodes (LN), bone marrow (BM), and peripheral blood (PB) are significantly different from each other. Among the major pathways associated with differential gene expression, a “tolerogenic signature” involved in host immune tolerance is significant in regulating CLL progression. The genes associated with the tolerogenic signature are significantly differentially expressed in patient LN-CLL compared to BM-CLL and PB-CLL, suggesting that LN-CLL cells induce this immune tolerance. From 83 differentially expressed genes identified by GEP that are associated with immune dysregulation, we selected eleven genes (CAV1, PTPN6, PKCb, ZWINT, IL2Ra, CBLC, CDC42, ZNF175, ZNF264, IL10, and HLA-G) for validation studies to determine whether these genes are also dysregulated in the Emu-TCL1 mouse model of CLL. The results demonstrate a trend of upregulation of these genes as determined by qRT-PCR in the LN-tumor microenvironment. To further evaluate the kinetics of selected gene expression during tumor progression, we determined the expression levels of Cav1, Ptpn6, and Pkcb at 12, 24, and 36 weeks of CLL development in the Em-TCL1 mouse model. We found that the expression of all three genes increased as a function of age, indicating a correlation of gene expression with disease progression. In addition, as CLL progressed in these mice there was a marked decrease in CD4+ and CD8+ T cells. The murine data were further validated using CLL cells from the same patients with indolent versus aggressive disease indicating a similar trend in expression as CLL progressed (n=4). Furthermore, patient data analyzed by Kaplan Meier analyses of the expression levels of the selected genes indicated a significant association between down-regulation of PTPN6 (p=0.031) and up-regulation of ZWINT (p<0.001) with clinical outcome as determined by a shorter time to treatment (p<0.05). Functional analysis by knockdown of CAV1 and PKCb in primary patient CLL cells determined by MTT assay showed a decrease in proliferation following knockdown of these genes (p<0.005). Protein-interaction modeling revealed regulation of CAV1 and PTPN6 by one another. Additionally, the PTPN6 protein regulates B cell receptor (BCR) signaling and subsequently the BCR regulates PKCb. Therefore, these data from both mice and humans with CLL, argue that an aggressive disease phenotype is paralleled by expression of genes associated with immune suppression. In particular, evidence presented here suggests, dysregulation of CAV1, PTPN6, ZWINT, and PKCb expression promotes CLL progression. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document