Effect of Nitrate Supplementation on Cognitive Function and Neurovascular Coupling in Hypoxia

2015 ◽  
Vol 47 ◽  
pp. 605-606
Author(s):  
Wesley K. Lefferts ◽  
William E. Hughes ◽  
Tom D. Brutsaert ◽  
Corey N. White ◽  
Kevin S. Heffernan
2014 ◽  
Vol 34 (5) ◽  
pp. 794-801 ◽  
Author(s):  
Aaron A Phillips ◽  
Darren ER Warburton ◽  
Philip N Ainslie ◽  
Andrei V Krassioukov

Individuals with high-level spinal cord injury (SCI) experience low blood pressure (BP) and cognitive impairments. Such dysfunction may be mediated in part by impaired neurovascular coupling (NVC) (i.e., cerebral blood flow responses to neurologic demand). Ten individuals with SCI > T6 spinal segment, and 10 age- and sex-matched controls were assessed for beat-by-beat BP, as well as middle and posterior cerebral artery blood flow velocity (MCAv, PCAv) in response to a NVC test. Tests were repeated in SCI after 10 mg midodrine (alpha1-agonist). Verbal fluency was measured before and after midodrine in SCI, and in the control group as an index of cognitive function. At rest, mean BP was lower in SCI (70 ± 10 versus 92 ± 14 mm Hg; P<0.05); however, PCAv conductance was higher (0.56 ± 0.13 versus 0.39 ± 0.15 cm/second/mm Hg; P<0.05). Controls exhibited a 20% increase in PCAv during cognition; however, the response in SCI was completely absent ( P<0.01). When BP was increased with midodrine, NVC was improved 70% in SCI, which was reflected by a 13% improved cognitive function ( P<0.05). Improvements in BP were related to improved cognitive function in those with SCI ( r2 = 0.52; P<0.05). Impaired NVC, secondary to low BP, may partially mediate reduced cognitive function in individuals with high-level SCI.


Redox Biology ◽  
2019 ◽  
Vol 24 ◽  
pp. 101192 ◽  
Author(s):  
Stefano Tarantini ◽  
Marta Noa Valcarcel-Ares ◽  
Peter Toth ◽  
Andriy Yabluchanskiy ◽  
Zsuzsanna Tucsek ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 121-121
Author(s):  
Stefano Tarantini ◽  
Andriy Yabluchanskiy ◽  
Praveen Ballabh ◽  
Eszter Farkas ◽  
Joseph Baur ◽  
...  

Abstract Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hypothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory and gait coordination. These findings are paralleled by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment (VCI).


2013 ◽  
Vol 304 (2) ◽  
pp. R73-R83 ◽  
Author(s):  
James Kelly ◽  
Jonathan Fulford ◽  
Anni Vanhatalo ◽  
Jamie R. Blackwell ◽  
Olivia French ◽  
...  

Dietary nitrate (NO3−) supplementation has been shown to reduce resting blood pressure and alter the physiological response to exercise in young adults. We investigated whether these effects might also be evident in older adults. In a double-blind, randomized, crossover study, 12 healthy, older (60–70 yr) adults supplemented their diet for 3 days with either nitrate-rich concentrated beetroot juice (BR; 2 × 70 ml/day, ∼9.6 mmol/day NO3−) or a nitrate-depleted beetroot juice placebo (PL; 2 × 70 ml/day, ∼0.01 mmol/day NO3−). Before and after the intervention periods, resting blood pressure and plasma [nitrite] were measured, and subjects completed a battery of physiological and cognitive tests. Nitrate supplementation significantly increased plasma [nitrite] and reduced resting systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg; P < 0.05) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 mmHg; P < 0.05) blood pressure. Nitrate supplementation resulted in a speeding of the V̇o2 mean response time (BR: 25 ± 7 vs. PL: 28 ± 7 s; P < 0.05) in the transition from standing rest to treadmill walking, although in contrast to our hypothesis, the O2 cost of exercise remained unchanged. Functional capacity (6-min walk test), the muscle metabolic response to low-intensity exercise, brain metabolite concentrations, and cognitive function were also not altered. Dietary nitrate supplementation reduced resting blood pressure and improved V̇o2 kinetics during treadmill walking in healthy older adults but did not improve walking or cognitive performance. These results may have implications for the enhancement of cardiovascular health in older age.


2021 ◽  
Vol 165 ◽  
pp. 51
Author(s):  
Cátia F. Lourenço ◽  
João Gonçalves ◽  
José Sereno ◽  
João Sargento-Freitas ◽  
Miguel Castelo-Branco ◽  
...  

2016 ◽  
Vol 41 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Wesley K. Lefferts ◽  
William E. Hughes ◽  
Corey N. White ◽  
Tom D. Brutsaert ◽  
Kevin S. Heffernan

The matching of oxygen supply to neural demand (i.e., neurovascular coupling (NVC)) is an important determinant of cognitive performance. The impact of hypoxia on NVC remains poorly characterized. NVC is partially modulated by nitric oxide (NO), which may initially decrease in hypoxia. This study investigated the effect of acute NO-donor (nitrate) supplementation on NVC and cognitive function in hypoxia. Twenty healthy men participated in this randomized, double-blind, crossover design study. Following normoxic cognitive/NVC testing, participants consumed either nitrate (NIT) or a NIT-depleted placebo (PLA). Participants then underwent 120 min of hypoxia (11.6% ± 0.1% O2) and all cognitive/NVC testing was repeated. NVC was assessed as change in middle cerebral artery (MCA) blood flow during a cognitive task (incongruent Stroop) using transcranial Doppler. Additional computerized cognitive testing was conducted separately to assess memory, executive function, attention, sensorimotor, and social cognition domains. Salivary nitrite significantly increased following supplementation in hypoxia for NIT (+2.6 ± 1.0 arbitrary units (AU)) compared with PLA (+0.2 ± 0.3 AU; p < 0.05). Memory performance (−6 ± 13 correct) significantly decreased (p < 0.05) in hypoxia while all other cognitive domains were unchanged in hypoxia for both PLA and NIT conditions (p > 0.05). MCA flow increased during Stroop similarly in normoxia (PLA +5 ± 6 cm·s−1, NIT +7 ± 7 cm·s−1) and hypoxia (PLA +5 ± 9 cm·s−1, NIT +6 ± 7 cm·s−1) (p < 0.05) and this increase was not altered by PLA or NIT (p > 0.05). In conclusion, acute hypoxia resulted in significant reductions in memory concomitant with preservation of executive function, attention, and sensorimotor function. Hypoxia had no effect on NVC. Acute NIT supplementation had no effect on NVC or cognitive performance in hypoxia.


Sign in / Sign up

Export Citation Format

Share Document