Maximal Fat Oxidation Rate and Fatmax in Boys and Girls at Two Different Maturity Levels

2016 ◽  
Vol 48 ◽  
pp. 385
Author(s):  
Brandon Dykstra ◽  
Justin P. Guilkey ◽  
Jennifer Erichsen ◽  
Anthony D. Mahon

2020 ◽  
Vol 16 (5) ◽  
pp. 371-376
Author(s):  
B. Taati ◽  
H. Rohani

The present study aimed to investigate the potential effect of different aerobic fitness levels on substrate oxidation in trained taekwondo athletes. 57 male athletes (age 21.10±7.79 years; VO2max 50.67±6.67 ml/kg/min) with regular weekly taekwondo training and training experience of at least three years completed a graded exercise test to exhaustion on a treadmill. Maximal fat oxidation (MFO), the exercise intensity related to MFO (Fatmax), and carbohydrate (CHO) oxidation rate were measured using indirect calorimetry methods. The athletes then were divided into a low (<50 ml/kg/min, n=18) and high (>50 ml/kg/min, n=39) VO2max group. The average MFO was higher in the high VO2max group than in the low VO2max group (0.46±0.19 vs 0.28±0.11 g/min; P<0.001). Although Fatmax tended toward higher values in the high VO2max group, no difference was observed between the groups (49.15±15.22 vs 42.42±12.37% of VO2max; P=0.18). It was also shown that the high VO2max group had a lower CHO oxidation rate and a higher fat oxidation rate at given exercise intensities. In conclusion, it seems that MFO and substrate oxidation rates in taekwondo athletes can be influenced by aerobic fitness level such that the athletes with higher VO2max appeared to use more fat as a fuel source for energy supply during a given exercise.



2014 ◽  
Vol 28 (8) ◽  
pp. 2121-2126 ◽  
Author(s):  
Ashley N. Blaize ◽  
Jeffrey A. Potteiger ◽  
Randal P. Claytor ◽  
Douglas A. Noe


2011 ◽  
Vol 111 (9) ◽  
pp. 2063-2068 ◽  
Author(s):  
Corey A. Rynders ◽  
Siddhartha S. Angadi ◽  
Nathan Y. Weltman ◽  
Glenn A. Gaesser ◽  
Arthur Weltman


Author(s):  
Jacob Frandsen ◽  
Ida Marie Dahlgaard Hansen ◽  
Julie Fensmark Wismann ◽  
Maria Høyer Olsen ◽  
Morten Runge Brage-Andersen ◽  
...  

Abstract Introduction Maximal fat oxidation rate (MFO) is higher in aerobically fit vs. unfit young men, but this training related increase in MFO is attenuated in middle-aged men. Further, it has also been found that unfit men with obesity may have an elevated MFO compared to unfit normal-weight men. Aim/Hypothesis Based hereupon, we aimed to investigate whether a fitness related higher MFO were attenuated in middle-aged women compared to young women. Also, we aimed to investigate if unfit women with obesity have a higher MFO compared to unfit normal-weight women. We hypothezised that the training related elevated MFO was attenuated in middle-aged women, but that unfit women with obesity would have an elevated MFO compared to unfit normal-weight women. Methods We recruited a total of 70 women stratified into six groups: Young fit (n=12), young unfit (n=12) middle-aged fit (n=12), middle-aged unfit (n=12), unfit young women with obesity (n=12) and unfit middle-aged women with obesity (n=10). Body composition and resting blood samples were obtained and MFO was measured by a graded exercise test on a cycle ergometer via indirect calorimetry. Subsequently, a maximal exercise test was performed to establish V̇O2peak. Results Young and middle-aged fit women had a higher MFO compared to age-matched unfit women, and young fit women had a higher MFO compared to fit middle-aged women. Unfit women with obesity, independent of age, had a higher MFO compared to their normal-weight and unfit counterparts. Conclusion The training related increase in MFO seems maintained in middle-aged women and secondly, we find that unfit women with obesity, independent of age have a higher MFO compared to unfit normal-weight women.



Author(s):  
Angelo Cataldo ◽  
Giuseppe Russo ◽  
Dario Cerasola ◽  
Danila Di Majo ◽  
Marco Giammanco ◽  
...  

The contribution of fat oxidation to energy production during exercise is influenced by intensity of exercise. The aim of this study was to assess the relationship between the highest value of fat oxidation rate (FATmax) and the oxygen uptake (VO2) in sedentary type 2 diabetes (T2D) patients vs healthy sedentary subjects. Sedentary T2D patients and healthy sedentary subjects were evaluated to a graded exercise test, and oxygen uptake and fat oxidation rate were detected. Data show that in T2D patients fat oxidation rate is not impaired and the positive linear correlation between FATmax and both VO2 and VO2max suggests that even in T2D patients the muscle oxidative capacity might increase in response to aerobic training.



2018 ◽  
Vol 118 (9) ◽  
pp. 2029-2031 ◽  
Author(s):  
Francisco J. Amaro-Gahete ◽  
Jonatan R. Ruiz


2021 ◽  
Vol 80 (1) ◽  
pp. 163-172
Author(s):  
Kamil Michalik ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract The incremental exercise test is the most common method in assessing the maximal fat oxidation (MFO) rate. The main aim of the study was to determine whether the progressive linear RAMP test can be used to assess the maximal fat oxidation rate along with the intensities that trigger its maximal (FATmax) and its minimal (FATmin) values. Our study comprised 57 young road cyclists who were tested in random order. Each of them was submitted to two incremental exercise tests on an electro-magnetically braked cycle-ergometer - STEP (50 W·3 min-1) and RAMP (~0.278 W·s-1) at a 7-day interval. A stoichiometric equation was used to calculate the fat oxidation rate, while the metabolic thresholds were defined by analyzing ventilation gases. The Student’s T-test, Bland-Altman plots and Pearson’s linear correlations were resorted to in the process of statistical analysis. No statistically significant MFO variances occurred between the tests (p = 0.12) and its rate amounted to 0.57 ± 0.15 g·min-1 and 0.53 ± 0.17 g·min-1 in the STEP and RAMP, respectively. No statistically significant variances in the absolute and relative (to maximal) values of oxygen uptake and heart rate were discerned at the FATmax and FATmin intensities. The RAMP test displayed very strong oxygen uptake correlations between the aerobic threshold and FATmax (r = 0.93, R2 = 0.87, p < 0.001) as well as the anaerobic threshold and FATmin (r = 0.88, R2 = 0.78, p < 0.001). Our results corroborate our hypothesis that the incremental RAMP test as well as the STEP test are reliable tools in assessing MFO, FATmax and FATmin intensities.



2017 ◽  
Vol 38 (13) ◽  
pp. 975-982 ◽  
Author(s):  
Jacob Frandsen ◽  
Stine Vest ◽  
Steen Larsen ◽  
Flemming Dela ◽  
Jørn Helge

AbstractThe aim of the present study was to investigate the relationship between maximal fat oxidation rate (MFO) measured during a progressive exercise test on a cycle ergometer and ultra-endurance performance. 61 male ironman athletes (age: 35±1 yrs. [23–47 yrs.], with a BMI of 23.6±0.3 kg/m2 [20.0–30.1 kg/m2], a body fat percentage of 16.7±0.7% [8.4–30.7%] and a VO2peak of 58.7±0.7 ml/min/kg [43.9–72.5 ml/min/kg] SEM [Range]) were tested in the laboratory between 25 and 4 days prior to the ultra-endurance event, 2016 Ironman Copenhagen. Simple bivariate analyses revealed significant negative correlations between race time and MFO (r2=0.12, p<0.005) and VO2peak (r2=0.45, p<0.0001) and a positive correlation between race time and body fat percentage (r2=0.27, p<0.0001). MFO and VO2peak were not correlated. When the significant variables from the bivariate regression analyses were entered into the multiple regression models, VO2peak and MFO together explained 50% of the variation observed in race time among the 61 Ironman athletes (adj R2=0.50, p<0.001). These results suggests that maximal fat oxidation rate exert an independent influence on ultra-endurance performance (>9 h). Furthermore, we demonstrate that 50% of the variation in Ironman triathlon race time can be explained by peak oxygen uptake and maximal fat oxidation.



2009 ◽  
Vol 41 ◽  
pp. 498
Author(s):  
Soun-Cheng Wang ◽  
Yu-Shih Wang ◽  
Yan-Jiun Huang ◽  
Tai-Ju Chiang ◽  
Shwu-Jen Tasy ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document