scholarly journals Oxygen uptake and ratings of perceived exertion at the lactate threshold and maximal fat oxidation rate in untrained adults

2011 ◽  
Vol 111 (9) ◽  
pp. 2063-2068 ◽  
Author(s):  
Corey A. Rynders ◽  
Siddhartha S. Angadi ◽  
Nathan Y. Weltman ◽  
Glenn A. Gaesser ◽  
Arthur Weltman
Author(s):  
Angelo Cataldo ◽  
Giuseppe Russo ◽  
Dario Cerasola ◽  
Danila Di Majo ◽  
Marco Giammanco ◽  
...  

The contribution of fat oxidation to energy production during exercise is influenced by intensity of exercise. The aim of this study was to assess the relationship between the highest value of fat oxidation rate (FATmax) and the oxygen uptake (VO2) in sedentary type 2 diabetes (T2D) patients vs healthy sedentary subjects. Sedentary T2D patients and healthy sedentary subjects were evaluated to a graded exercise test, and oxygen uptake and fat oxidation rate were detected. Data show that in T2D patients fat oxidation rate is not impaired and the positive linear correlation between FATmax and both VO2 and VO2max suggests that even in T2D patients the muscle oxidative capacity might increase in response to aerobic training.


2021 ◽  
Vol 80 (1) ◽  
pp. 163-172
Author(s):  
Kamil Michalik ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract The incremental exercise test is the most common method in assessing the maximal fat oxidation (MFO) rate. The main aim of the study was to determine whether the progressive linear RAMP test can be used to assess the maximal fat oxidation rate along with the intensities that trigger its maximal (FATmax) and its minimal (FATmin) values. Our study comprised 57 young road cyclists who were tested in random order. Each of them was submitted to two incremental exercise tests on an electro-magnetically braked cycle-ergometer - STEP (50 W·3 min-1) and RAMP (~0.278 W·s-1) at a 7-day interval. A stoichiometric equation was used to calculate the fat oxidation rate, while the metabolic thresholds were defined by analyzing ventilation gases. The Student’s T-test, Bland-Altman plots and Pearson’s linear correlations were resorted to in the process of statistical analysis. No statistically significant MFO variances occurred between the tests (p = 0.12) and its rate amounted to 0.57 ± 0.15 g·min-1 and 0.53 ± 0.17 g·min-1 in the STEP and RAMP, respectively. No statistically significant variances in the absolute and relative (to maximal) values of oxygen uptake and heart rate were discerned at the FATmax and FATmin intensities. The RAMP test displayed very strong oxygen uptake correlations between the aerobic threshold and FATmax (r = 0.93, R2 = 0.87, p < 0.001) as well as the anaerobic threshold and FATmin (r = 0.88, R2 = 0.78, p < 0.001). Our results corroborate our hypothesis that the incremental RAMP test as well as the STEP test are reliable tools in assessing MFO, FATmax and FATmin intensities.


1993 ◽  
Vol 3 (4) ◽  
pp. 376-386 ◽  
Author(s):  
Donald R. Dengel ◽  
Peter G. Weyand ◽  
Donna M. Black ◽  
Kirk J. Cureton

To investigate the effects of varying levels of hypohydration on ratings of perceived exertion (RPE) during moderate and heavy submaximal exercise, and at the lactate threshold (LT) and ventilatory threshold (VT), 9 male subjects cycled under states of euhydration (EU), moderate hypohydration (MH), and severe hypohydration (SH). The desired level of hypohydration was achieved over a 36-hr period by having subjects cycle at 50% VO2max in a 38°C environment on two occasions while controlling fluid intake and diet. During submaximal exercise, oxygen uptake, ventilation, heart rate, blood lactate, and RPE were not significantly different among treatments. Hypohydration did not significantly alter LT or VT, or perceptual responses at LT or VT. It is concluded that hypohydration of up to 5.6% caused by fluid manipulation and exercise in the heat over a 36-hr period does not alter RPE or the lactate or ventilatory threshold, nor RPE at the lactate and ventilatory thresholds measured during moderate and heavy submaximal cycling in a neutral (22°C) environment.


2009 ◽  
Vol 23 (4) ◽  
pp. 1292-1299 ◽  
Author(s):  
Michelle Mielke ◽  
Terry J Housh ◽  
C Russell Hendrix ◽  
Clayton L Camic ◽  
Jorge M Zuniga ◽  
...  

2020 ◽  
Vol 16 (5) ◽  
pp. 371-376
Author(s):  
B. Taati ◽  
H. Rohani

The present study aimed to investigate the potential effect of different aerobic fitness levels on substrate oxidation in trained taekwondo athletes. 57 male athletes (age 21.10±7.79 years; VO2max 50.67±6.67 ml/kg/min) with regular weekly taekwondo training and training experience of at least three years completed a graded exercise test to exhaustion on a treadmill. Maximal fat oxidation (MFO), the exercise intensity related to MFO (Fatmax), and carbohydrate (CHO) oxidation rate were measured using indirect calorimetry methods. The athletes then were divided into a low (<50 ml/kg/min, n=18) and high (>50 ml/kg/min, n=39) VO2max group. The average MFO was higher in the high VO2max group than in the low VO2max group (0.46±0.19 vs 0.28±0.11 g/min; P<0.001). Although Fatmax tended toward higher values in the high VO2max group, no difference was observed between the groups (49.15±15.22 vs 42.42±12.37% of VO2max; P=0.18). It was also shown that the high VO2max group had a lower CHO oxidation rate and a higher fat oxidation rate at given exercise intensities. In conclusion, it seems that MFO and substrate oxidation rates in taekwondo athletes can be influenced by aerobic fitness level such that the athletes with higher VO2max appeared to use more fat as a fuel source for energy supply during a given exercise.


2014 ◽  
Vol 28 (8) ◽  
pp. 2121-2126 ◽  
Author(s):  
Ashley N. Blaize ◽  
Jeffrey A. Potteiger ◽  
Randal P. Claytor ◽  
Douglas A. Noe

Author(s):  
Ignacio Martinez-Navarro ◽  
Antonio Montoya-Vieco ◽  
Eladio Collado ◽  
Bárbara Hernando ◽  
Carlos Hernando

AbstractThe study aimed to assess the relationship between peak oxygen uptake, ventilatory thresholds and maximal fat oxidation with ultra trail male and female performance. 47 athletes (29 men and 18 women) completed a cardiopulmonary exercise test between 2 to 4 weeks before a 107-km ultra trail. Body composition was also analyzed using a bioelectrical impedance weight scale. Exploratory correlation analyses showed that peak oxygen uptake (men: r=–0.63, p=0.004; women: r=–0.85, p < 0.001), peak speed (men: r=–0.74, p < 0.001; women: r=–0.69, p=0.009), speed at first (men: r=–0.49, p=0.035; women: r=–0.76, p=0.003) and second (men: r=–0.73, p < 0.001; women: r=–0.76, p=0.003) ventilatory threshold, and maximal fat oxidation (men: r=–0.53, p=0.019; women: r=–0.59, p=0.033) were linked to race time in male and female athletes. Percentage of fat mass (men: r=0.58, p=0.010; women: r=0.62, p= 0.024) and lean body mass (men: r=–0.61, p=0.006; women: r=–0.61, p=0.026) were also associated with performance in both sexes. Subsequent multiple regression analyses revealed that peak speed and maximal fat oxidation together were able to predict 66% of male performance; while peak oxygen uptake was the only statistically significant variable explaining 69% of the variation in women’s race time. These results, although exploratory in nature, suggest that ultra trail performance is differently predicted by endurance variables in men and women.


1987 ◽  
Vol 19 (4) ◽  
pp. 354???362 ◽  
Author(s):  
JOHN J. DEMELLO ◽  
KIRK J. CURETON ◽  
ROBIN E. BOINEAU ◽  
MAYA M. SINGH

1996 ◽  
Vol 82 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Antonios K. Travlos ◽  
Daniel Q. Marisi

This study was conducted to investigate the influence of fitness level and gradually increased amounts of exercise on individuals' ratings of perceived exertion (RPE). 20 men served as paid subjects. They were divided into groups of high (>56 ml/kg/min.) and low fitness (<46 ml/kg/min.) according to their maximal oxygen uptake (VO2 max). Participants were required to pedal on a cycle ergometer at a progressively increased workload (every 10 min.) corresponding to 40, 50, 60, 70, and 80% of individual VO2 max values. Heart rates, RPE, and core temperatures were recorded every 5th minute after the initiation of exercising at a specific workload. Analysis indicated that, when controlling for VO2 max values, elevations of heart rate and core temperature were not affected by fitness. However, highly fit individuals perceived themselves under less exertion than did the group low in fitness. Correlations showed that, taking into consideration fitness, there is a stronger relationship between RPE and heart rate and RPE and core temperature for the highly fit individuals than for the less fit.


Sign in / Sign up

Export Citation Format

Share Document