The acute Effect of Static Stretching on Static Balance and Vertical Jump in Volleyball Players

2016 ◽  
Vol 48 ◽  
pp. 740
Author(s):  
Jean P. Moreira-Umaña ◽  
Pietro Scaglioni-Solano ◽  
Denis Alfaro-Jiménez ◽  
José Moncada-Jiménez
2011 ◽  
Vol 15 (3) ◽  
pp. 103-106 ◽  
Author(s):  
Kimberly J. Faulkinbury ◽  
Jennie L. Stieg ◽  
Tai T. Tran ◽  
Lee E. Brown ◽  
Jared W. Coburn ◽  
...  

2014 ◽  
Vol 20 (0) ◽  
pp. 48 ◽  
Author(s):  
Teet Meerits ◽  
Sebastian Bacchieri ◽  
Mati Pääsuke ◽  
Jaan Ereline ◽  
Antonio Cicchella ◽  
...  

2018 ◽  
Vol 02 (05) ◽  
pp. E142-E147 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Ryo Hirabayashi ◽  
Shuhei Ohya ◽  
Takafumi Aoki ◽  
Daichi Suzuki ◽  
...  

AbstractThis study aimed to clarify the acute effect of static stretching (SS) with superficial cooling on dorsiflexion range of motion (DF ROM) and muscle stiffness. Sixteen healthy males participated in the cooling condition and a control condition in a random order. The DF ROM and the shear elastic modulus of medial gastrocnemius (MG) in the dominant leg were measured during passive dorsiflexion. All measurements were performed prior to (PRE) and immediately after 20 min of cooling or rested for 20 min (POST), followed by 2 min SS (POST SS). In cooling condition, DF ROM at POST and POST SS were significantly higher than that at PRE and DF ROM at POST SS was significantly higher than that at POST. In addition, the shear elastic modulus at POST was significantly higher than that at PRE and the shear elastic modulus at POST SS was significantly lower than those at PRE and POST. However, there were no significant differences in the percentage changes between PRE and POST SS between the cooling and control conditions. Our results showed that effects of SS with superficial cooling on increases in ROM and decrease in muscle stiffness were no more beneficial than those of SS alone.


Author(s):  
Nada Rhouni ◽  
Nicole C. Dabbs ◽  
Trevor Gillum ◽  
Jared W. Coburn

Jumping and balance are necessary skills for most athletes, and mini-trampoline training has been shown to improve them. Little is known about the acute effect of mini-trampoline jumping on jump performance and dynamic balance. Objectives: The purpose of this study is to investigate the effect of 6 maximal jumps on a mini-trampoline on countermovement vertical jump (CMVJ) variables and on balance parameters. Methods: Twenty one recreationally trained individuals participated in three testing sessions and were either allocated to a control group (N=10) or a trampoline group (N=11). All the participants performed a dynamic warm up prior to their assessments. Baseline CMVJ and balance assessments were measured. For the jump performance tests, the control group rested for 30s, and the trampoline group performed 6 maximal CMVJs on a mini-trampoline. Immediately following the trampoline jumps or the rest period, participants performed three jump trials. The jumping protocol was repeated every minute up to 5 minutes and balance was reassessed immediately after only. Results: There was no significant interaction of time by group and no group effects in all the jumping parameters, however, there was a significant increase in jump height (p <0.001) post-condition, and a significant decrease in peak power (p= 0.01) at the 4th minute for both groups. There was no significant interaction of time by condition, no time effect and no group effect (p>0.05) on the balance variables. Conclusion: These results do not support our hypothesis and show that trampoline jumping does not improve jump and balance performance acutely.


Author(s):  
Leonidas Petridis ◽  
Gergely Pálinkás ◽  
Zsófia Tróznai ◽  
Bettina Béres ◽  
Katinka Utczás

The aim of this study was to assess the vertical jump performance and the force-velocity profile of elite female handball and volleyball players. Forty-one female athletes were measured, 28 handball players (age: 24.0 ± 3.6 years, body height: 1.75 ± 0.05 m, body mass: 69.0 ± 7.3 kg) and 13 volleyball players (age: 24.1 ± 5.2 years, body height: 1.83 ± 0.07 m and body mass: 74.9 ± 7.9 kg). All players performed unloaded and loaded countermovement jumps (CMJ) on a force platform. The theoretical maximal force ( F0), the theoretical maximum velocity ( v0), the theoretical maximal power ( Pmax), the slope of the F-v relationship ( Sfv) and the force-velocity imbalance ( FVimb) were calculated. Mean value of vertical jump height was 0.33 ± 0.03m, with no difference between handball and volleyball players. Mean values of F0, v0, Pmax, Sfv and FVimb for all players were 31.2 ± 2.6 N/kg, 3.10 ± 0.50 m·s−1, 24.2 ± 3.2 w/kg, -10.32 ± 2.09 Ns/m/kg and 28.1 ± 13.3% respectively. Two players had a low magnitude velocity-deficit, whereas most of the players exhibited a low to high force-deficit. A strong correlation was found between the ratio of measured to optimal F-v slope with the change in the proportion of net force to total force during unloaded and loaded conditions. The findings suggest that it would be beneficial for these athletes to first decrease their force deficit through mainly maximal strength training before implementing training to further maximize power output. Establishment of the F-v profile could be a useful diagnostic tool for coaches to optimize strength training and to design training intervention based on the individual need of each athlete.


Sign in / Sign up

Export Citation Format

Share Document