Astaxanthin Formulation Induces Muscle Strength and Endurance Increases Beyond High Intensity Training in Elderly Subjects

2017 ◽  
Vol 49 (5S) ◽  
pp. 943
Author(s):  
Sophia Z. Liu ◽  
Amir Ali ◽  
Matt VanDoren ◽  
Baback Roshanravan ◽  
Eric Shankland ◽  
...  
Author(s):  
In-Dong KIM

Background: This study investigated the effect of sodium bicarbonate (HCO3-) intake on maximum muscle strength variables during eight weeks of high-intensity exercise of a sprinter. Methods: The study was conducted on 30 elite sprint athletes in Seoul, Republic of Korea as in 2016 with ≥3 yr of an athletic career by assigning 10 each to three groups (the control, training, and sodium bicarbonate-training combination groups [HCO3- and training group]). The training group and the HCO3- and training group participated in a high-intensity exercise program for 90 min per session, five days a week for eight weeks in total, and it involved 80%-90% heart rate max intensity increase every 2-3 weeks, and allocation of internal exercise, aquatic exercise, and hill exercise. HCO3- was provided to the HCO3- and training group, and involved an intake of 300 g of HCO3- per 1 kg body weight, once a day, 90 min prior to the high-intensity exercise program for eight weeks. Results: HCO3- intake during high-intensity training had a positive effect on maximum muscle strength. A positive effect was observed in the HCO3- and training groups; however, the effect on maximum muscle strength was stronger in the HCO3- and training groups. In particular, the effect on maximum muscle strength was observed during extension than during flexing starting from the fourth week of the exercise program with HCO3- intake. Conclusion: HCO3- intake during 8 weeks of high-intensity training began to have a positive effect on maximum muscle strength. Therefore, HCO3- intake during high-intensity exercise is effective in improving exercise capacity.


Author(s):  
Márcia Cristiane Araújo ◽  
Andréia de Sousa Costa ◽  
Cristien Martins Frota ◽  
Antonio Carlos Leal Cortez ◽  
Antonio Carlos Gomes ◽  
...  

Introdução: A análise dos diversos fatores genéticos, principalmente os relacionados aos polimorfismos de DNA, têm sido investigados na busca de uma melhor compreensão dos mecanismos relacionados à hipertrofia e força muscular. Dentre os diversos genes polimórficos relacionados ao tema estão a miostatina e o gene α-actinina-3 (ACTN3).Objetivo: Avaliar a modulação do gene da miostatina na hipertrofia muscular esquelética e do gene ACTN3 na regulação dos níveis de força.Métodos: Estudo de revisão integrativa no qual foram pesquisados artigos que tivessem avaliado a modulação genética da hipertrofia muscular esquelética e da força. Fizeram parte desta investigação estudos originais e de revisão, publicados em português, inglês e espanhol, entre os anos de 1995 a 2017, selecionados nas bases de dados SciELO e Pubmed, utilizando-se três conjuntos de intersecção de termos de busca bibliográfica em português: a) “miostatina” e “hipertrofia muscular esquelética” e/ou “genética”; e b) “exercício físico” ou “treinamento aeróbico” ou “treinamento de força” ou “rendimento esportivo” e “ACTN3” e/ou “força muscular” e/ou genética. Em inglês: a) “myostatin”and “skeletal muscle hypertrophy” and/or genetics; and b) “physical exercise” and “aerobic training”, strength training, sports performance) and “ACTN3” “muscular strength” and/or “genetic”. E em espanhol: “miostatina” y “hipertrofia muscular esquelética” y/o genética; y b) “ejercicio físico” o “entrenamiento aeróbico” o “entrenamiento de fuerza” o “rendimiento desportivo) y “ACTN3” o “fuerza muscular” y/o genética”.Resultados e Discussão: Os estudos apontaram: a) associação do genótipo RR577 do ACTN3 com a força e o tamanho da área de secção transversa do músculo esquelético; b) correlação do alelo R com fibras glicolíticas de contração rápida e níveis médios de testosterona significativamente mais elevados; e c) o polimorfismo do ACTN3 está relacionado ao treinamento de alta intensidade. As evidências apontaram que a miostatina atua na inibição da hipertrofia muscular esquelética, e também pode ser modulada geneticamente pelo exercício físico.Conclusão: A literatura aponta evidências de que o polimorfismo do ACNT3 está relacionado com o treinamento de alta intensidade, ressaltando que, segundo os resultados dos estudos, houve correlação do alelo R, com fibras glicolíticas de contração rápida e com os níveis de testosterona significativamente mais elevados. Sendo assim, o gene ACTN3 está correlacionado com o desenvolvimento da força muscular e a folistatina, proteína antagônica da miostatina, está associada ao aumento da massa muscular. Genetic Modulation of Myostatin and Actn3 Gene in Muscular Hypertrophy and Force: an Integrative ReviewIntroduction: The analysis of several genetic factors, especially those related to DNA polymorphisms, has been investigated in the search for a better understanding of the mechanisms related to hypertrophy and muscle strength. Among the several polymorphic genes related to the subject are myostatin and ACTN3.Objective: To evaluate the modulation of the myostatin gene in skeletal muscle hypertrophy and the ACTN3 gene in the regulation of strength levels.Methods: An integrative review study in which articles were searched that assessed the genetic modulation of skeletal muscle hypertrophy and strength. Original and review studies, published in Portuguese, English and Spanish, between 1995 and 2017, selected in the SciELO and PubMed databases, were carried out using three sets of intersection of bibliographic search: In English: a) “myostatin” and “skeletal muscle hypertrophy” and/or genetics; and b) “physical exercise” and “aerobic training”, strength training, sports performance) and “ACTN3” “muscular strength” and/or “genetic”. In Portuguese: a) “miostatina” e “hipertrofia muscular esquelética” e/ou “genética”; e b) “exercício físico” ou “treinamento aeróbico” ou “treinamento de força” ou “rendimento esportivo” e “ACTN3” e/ou “força muscular” e/ou genética. And in Spanish: “miostatina” y “hipertrofia muscular esquelética” y/o genética; y b) “ejercicio físico” o “entrenamiento aeróbico” o “entrenamiento de fuerza” o “rendimiento desportivo) y “ACTN3” o “fuerza muscular” y/o genética”.Results and Discussion: Studies indicated: a) association of RR577 genotype of ACTN3 with the strength and size of the cross-sectional area of skeletal muscle; b) correlation of the R allele with fast contracting glycolytic fibers and significantly higher mean levels of testosterone; and, c) ACTN3 polymorphism is related to high intensity training. Evidence has pointed out that myostatin acts on inhibition of skeletal muscle hypertrophy, as well as being genetically modulated by physical exercise.Conclusion: The literature showed evidence that the ACNT3 polymorphism is related to the high intensity training, emphasizing that according to the results of the studies, there was a correlation of the R allele with fast contracting glycolytic fibers and with testosterone levels higher. Thus, the ACTN3 gene is correlated with the development of muscle strength and follistatin, an antagonistic protein of myostatin, is associated with increased muscle mass. Keywords: hypertrophy, muscle strength, myostatin, polymorphism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugenia Murawska-Ciałowicz ◽  
Gilmara Gomes de Assis ◽  
Filipe Manuel Clemente ◽  
Yuri Feito ◽  
Petr Stastny ◽  
...  

AbstractThis study examined the effects of a nine-week intervention of four different high-intensity training modalities [high-intensity functional training (HIFT), high-intensity interval training (HIIT), high-intensity power training (HIPT), and high-intensity endurance training (HIET)] on the resting concentration of brain-derived neurotropic factor (BDNF). In addition, we evaluated the BDNF responses to Graded Exercise Test (GXT) and Wingate Anaerobic Test (WAnT) in men. Thirty-five healthy individuals with body mass index 25.55 ± 2.35 kg/m2 voluntarily participated in this study and were randomly assigned into four training groups. During nine-weeks they completed three exercise sessions per week for one-hour. BDNF was analyzed before and after a GXT and WAnT in two stages: (stage 0—before training and stage 9—after nine weeks of training). At stage 0, an increase in BDNF concentration was observed in HIFT (33%; p < 0.05), HIPT (36%; p < 0.05) and HIIT (38%; p < 0.05) after GXT. Even though HIET showed an increase in BDNF (10%) this was not statistically significant (p > 0.05). At stage 9, higher BDNF levels after GXT were seen only for the HIFT (30%; p < 0.05) and HIIT (18%; p < 0.05) groups. Reduction in BDNF levels were noted after the WAnT in stage 0 for HIFT (− 47%; p < 0.01), HIPT (− 49%; p < 0.001), HIET (− 18%; p < 0.05)], with no changes in the HIIT group (− 2%). At stage 9, BDNF was also reduced after WAnT, although these changes were lower compared to stage 0. The reduced level of BDNF was noted in the HIFT (− 28%; p < 0.05), and HIPT (− 19%;p < 0.05) groups. Additionally, all groups saw an improvement in VO2max (8%; p < 0.001), while BDNF was also correlated with lactate and minute ventilation and selected WAnT parameters. Our research has shown that resting values of BDNF after nine weeks of different forms of high-intensity training (HIT) have not changed or were reduced. Resting BDNF measured at 3th (before GXT at stage 9) and 6th day after long lasting HITs (before WAnT at stage 9) did not differed (before GXT), but in comparison to the resting value before WAnT at the baseline state, was lower in three groups. It appears that BDNF levels after one bout of exercise is depended on duration time, intensity and type of test/exercise.


2016 ◽  
Vol 44 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Mehdi Kargarfard ◽  
Eddie T. C. Lam ◽  
Ardalan Shariat ◽  
Mahmoud Asle Mohammadi ◽  
Saleh Afrasiabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document