scholarly journals The Effect of Sodium Bicarbonate Intake on Maximum Muscle Strength during High-Intensity Exercise of a Sprinter

Author(s):  
In-Dong KIM

Background: This study investigated the effect of sodium bicarbonate (HCO3-) intake on maximum muscle strength variables during eight weeks of high-intensity exercise of a sprinter. Methods: The study was conducted on 30 elite sprint athletes in Seoul, Republic of Korea as in 2016 with ≥3 yr of an athletic career by assigning 10 each to three groups (the control, training, and sodium bicarbonate-training combination groups [HCO3- and training group]). The training group and the HCO3- and training group participated in a high-intensity exercise program for 90 min per session, five days a week for eight weeks in total, and it involved 80%-90% heart rate max intensity increase every 2-3 weeks, and allocation of internal exercise, aquatic exercise, and hill exercise. HCO3- was provided to the HCO3- and training group, and involved an intake of 300 g of HCO3- per 1 kg body weight, once a day, 90 min prior to the high-intensity exercise program for eight weeks. Results: HCO3- intake during high-intensity training had a positive effect on maximum muscle strength. A positive effect was observed in the HCO3- and training groups; however, the effect on maximum muscle strength was stronger in the HCO3- and training groups. In particular, the effect on maximum muscle strength was observed during extension than during flexing starting from the fourth week of the exercise program with HCO3- intake. Conclusion: HCO3- intake during 8 weeks of high-intensity training began to have a positive effect on maximum muscle strength. Therefore, HCO3- intake during high-intensity exercise is effective in improving exercise capacity.

2019 ◽  
Vol 21 (4) ◽  
pp. 194-199
Author(s):  
Mahdi Ghafari ◽  
Ebrahim Banitalebi ◽  
Mohamad Faramarzi

Background and aims: Intermuscular lipolysis disorder plays an important role in insulin resistance and diabetes mellitus and perilipin PLIN5 and PLIN3 are the key proteins in regulating muscle cellular lipolysis. Therefore, the purpose of this study was to examine the relationship between the expression of PLIN3 and PLIN5 protein following endurance training in streptozotocin (STZ) rats. Methods: A number of 24 male Wistar rats were randomly divided into low endurance training group (n = 8), high-intensity training group (n = 8), and control group (n = 8). Diabetes was induced in every rat by STZ injection. Three days after injection, the blood samples were taken from the cut tip of the tails of the mice and animals with blood glucose greater than 300 mg/dL were considered diabetic. The training program included eight weeks of aerobic training at different intensities. Training in high- and low-intensity groups included 22-25 and 5-8 m/min of training. Finally, one-way analysis of variance (ANOVA) and correlation was used to determine the significance of the differences between variables, followed by utilizing Tukey’s post-hoc test for significance. Results: The comparison between the groups by ANOVA showed significant differences in PLIN3 (P=0.0006) and PLIN5 (P=0.012). The results of Tukey post hoc test also demonstrated a statistical difference between the mean values of diabetic control group and high-intensity endurance group regarding PLIN3 (P=0.01) and PLIN5 (P=0.009), but no significant increase was observed in the lowintensity exercise group as compared to the control group (PLIN3, P=0.067 & PLIN5, P=0.44). As regards insulin resistance, there was a significant difference among the three groups (P=0.0001). Eventually, the result of the correlation between PLIN3 and PLIN5 showed similar enhancement by increasing the intensity (P=0.0026). Conclusion: According to research results, high-intensity endurance training increased the expression of PLIN3 and PLIN5 in diabetic specimens and PLIN3 and PLIN5 followed a similar increase pattern in high-intensity training


Stroke ◽  
2020 ◽  
Vol 51 (10) ◽  
pp. 3074-3082 ◽  
Author(s):  
T. George Hornby ◽  
Christopher E. Henderson ◽  
Carey L. Holleran ◽  
Linda Lovell ◽  
Elliot J. Roth ◽  
...  

Background and Purpose: Previous data suggest patient demographics and clinical presentation are primary predictors of motor recovery poststroke, with minimal contributions of physical interventions. Other studies indicate consistent associations between the amount and intensity of stepping practice with locomotor outcomes. The goal of this study was to determine the relative contributions of these combined variables to locomotor outcomes poststroke across a range of patient demographics and baseline function. Methods: Data were pooled from 3 separate trials evaluating the efficacy of high-intensity training, low-intensity training, and conventional interventions. Demographics, clinical characteristics, and training activities from 144 participants >1-month poststroke were included in stepwise regression analyses to determine their relative contributions to locomotor outcomes. Subsequent latent profile analyses evaluated differences in classes of participants based on their responses to interventions. Results: Stepwise regressions indicate primary contributions of stepping activity on locomotor outcomes, with additional influences of age, duration poststroke, and baseline function. Latent profile analyses revealed 2 main classes of outcomes, with the largest gains in those who received high-intensity training and achieved the greatest amounts of stepping practice. Regression and latent profile analyses of only high-intensity training participants indicated age, baseline function, and training activities were primary determinants of locomotor gains. Participants with the smallest gains were older (≈60 years), presented with slower gait speeds (<0.40 m/s), and performed 600 to 1000 less steps/session. Conclusions: Regression and cluster analyses reveal primary contributions of training interventions on mobility outcomes in patients >1-month poststroke. Age, duration poststroke, and baseline impairments were secondary predictors. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02507466 and NCT01789853.


2012 ◽  
Vol 37 (6) ◽  
pp. 1019-1027 ◽  
Author(s):  
Man-Gyoon Lee ◽  
Kyung-Shin Park ◽  
Do-Ung Kim ◽  
Soon-Mi Choi ◽  
Hyoung-Jun Kim

The primary purpose of this study was to investigate the effects of high-intensity exercise training under relatively equal energy expenditure on whole body fat and abdominal fat loss, and cardiorespiratory fitness. Twenty-two untrained middle-aged Korean females were randomized into one of the following groups: control, low-intensity training group (LI), and high-intensity training group (HI). Subjects completed 14 weeks of training at 50% maximal oxygen consumption (LI) or 70% maximal oxygen consumption (HI) with the volume of exercise equated relative to kilograms of body weight. Weekly exercise volumes were 13.5 METs⋅h/week for the first 4 weeks, 18 METs⋅h/week for next 5 weeks, and 22.5 METs⋅h/week for the final 5 weeks. Data were analyzed using 2-way repeated measures ANOVA with post hoc test, using Bonferroni’s correction. HI showed significant reductions in fat mass (p < 0.05), total abdominal fat (p < 0.01), and subcutaneous abdominal fat (p < 0.01). LI reduced total abdominal fat (p < 0.05), but there were no other significant changes found in the control or LI groups. Maximal oxygen consumption was enhanced in both HI and LI with no significant group difference. High-density lipoprotein cholesterol increased significantly in HI (p < 0.05). IL-6, C-reactive protein, TNF-α, and other blood lipids were unaltered following training. Results indicate that high-intensity exercise training is more beneficial in whole body and abdominal fat loss; however, cardiorespiratory enhancement shows a dose–response relationship with weekly exercise volume. It is suggested that 14 weeks of aerobic exercise training at either high- or low-intensity is not sufficient enough to induce changes in levels of inflammatory proteins.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Xian Guo ◽  
Jianmin Cao ◽  
Yi Wang ◽  
Haitao Zhou ◽  
Jing Zhang ◽  
...  

Objective Long-term intensive training may led to ischemia oxygen reaction and increase the ROS. Astaxanthin, as the super antioxidant, was investigated to against anti-oxidative stress. By supplementing the astaxanthin, we wanted to observe if it can mediated Nrf2 reduces myocardial cell oxidative injury in rats after high intensity training of 6 weeks.  Methods 7-week SD male rats were divided into 3 groups randomly: control group ( C group,n =10),high intensity training group ( HT group,n = 15),astaxanthin and high intensity training group (HTA group,n = 15) . The rats in HTA group were given with astaxanthin 20 mg /kg·d and in HT group were given with oil during the training day.The serum cTnI,myocardial apoptosis index,  the expression of myocardial BAX, Bcl2, Nrf2, HO-1, myocardial MDA,SOD and T- AOC activity were measured 24 hours after the last training. Results After 6-week tranning of high intensity, compared with group C, the serum cTNI, myocardial apoptosis index, the expression of BAX and myocardial MDA were significantly higher in group HT(P<0.01).The Bcl2/Bax, the expression of HO-1, SOD and T-AOC activity were significantly declined (P<0.01). After the intervention of 6-week astaxanthin, compared with group HT, the serum cTNI, myocardial MDA, the myocardial apoptosis index, the expression of BAX were significantly lower in HTA group (cTNI(ng/ml): 1.16±0.27 VS 2.47±0.39, P<0.05; myocardial apoptosis index: 164.27±3.98 VS 196.20±9.65, P<0.01; BAX: 58.40±5.95 VS 78.03±3.80, P<0.01 ). Finally, Bcl2/Bax, SOD, T-AOC activity, the expression of Nrf2 and HO-1 were significantly higher  (Bcl2/Bax : 1.92±0.10 VS 1.19±0.18, P<0.01; SOD(U/mg): 52.38±6.15 VS 38.32±3.36, P<0.01; T-AOC(U/mg): 30.22±4.07 VS 23.76±3.20, P<0.01; Nrf2: 93.61±8.53 VS 74.26±6.69, P<0.01; HO-1: 84.99±13.78 VS 64.22±11.39, P<0.05).  Conclusions The supplement of astaxanthin can mediate Nrf2 signaling pathway, and elevate the expression of Nrf2 and HO-1. Then it can increase the activity of SOD and T-AOC and reduce the myocardial oxidative level and myocardial apoptosis in rats caused by 6-week high intensity training. Finally, the structure and function of heart tissue are back to normal.


2017 ◽  
Vol 49 (5S) ◽  
pp. 943
Author(s):  
Sophia Z. Liu ◽  
Amir Ali ◽  
Matt VanDoren ◽  
Baback Roshanravan ◽  
Eric Shankland ◽  
...  

2008 ◽  
Vol 105 (6) ◽  
pp. 1927-1933 ◽  
Author(s):  
Helen L. Birch ◽  
Alan M. Wilson ◽  
Allen E. Goodship

This study explores the hypothesis that high-intensity exercise induces degenerative changes in the injury-prone equine superficial digital flexor tendon (SDFT), but not in the rarely injured common digital extensor tendon (CDET). The horse represents a large-animal model that is applicable to human tendon and ligament physiology and pathology. Twelve age-matched female horses undertook galloping exercise three times a week with trotting exercise on alternative days (high-intensity group, n = 6) or only walking exercise (low-intensity group, n = 6) for 18 mo. The SDFT, suspensory ligament, deep digital flexor tendon, and CDET were harvested from the forelimb. Tissue from the mid-metacarpal region of the right limb tendons was analyzed for water, DNA, sulfated glycosaminoglycan and collagen content, collagen type III-to-I ratios, collagen cross-links, and tissue fluorescence. Left limb tendons were mechanically tested to failure. The analyses showed matrix composition to have considerable diversity between the functionally different structures. In addition, the specific structures responded differently to the imposed exercise. High-intensity training resulted in a significant decrease in the GAG content in the SDFT, but no change in collagen content, despite a decrease in collagen fibril diameters. There were no signs of degeneration or change in mechanical properties of the SDFT. The CDET had a lower water content following high-intensity training and a higher elastic modulus. Long-term, high-intensity training in skeletally mature individuals results in changes that suggest accelerated aging in the injury-prone SDFT and adaptation in the CDET.


Author(s):  
Changming Xu ◽  
Zhiwei Fu ◽  
Xueqiang Wang

Abstract Background Therapeutic training is the most commonly used treatment methods for chronic low back pain (CLBP), and the use of a pressure biofeedback unit for transversus abdominis muscle (TrA) training is one of the core muscle training methods. The study aim of this research is to explore the effects of different intensities (sham training, low-intensity and high-intensity) of TrA muscle training on people with CLBP in pressure-pain threshold (PPT). Methods A total of 45 patients with CLBP were recruited, of whom 44 were included in the analysis. Fifteen, 14, and 15 were included in the sham training group, the low-intensity group, and the high-intensity group, respectively. A pressure biofeedback unit was used in performing a one-time TrA training intervention involving 30 times of 180 mmHg TrA contraction training at high intensity for 10 min and 15 times of 100 mmHg TrA contraction training at low intensity for 5 min. The sham training group completed comfort exercises and did not undergo training. The evaluation indicators were as follows: PPT, short-form McGill pain questionnaire, and body surface pain radiation. Results High-intensity training could activate more waist core muscles than low-intensity training. Significant changes on PPT (units: kgf) were observed in the following four muscles immediately after high-intensity training: iliopsoas [0.69 (0.13–1.25) 95% CI, p = 0.020]; quadratus lumborum [0.84 (0.23–1.45) 95% CI, p = 0.012]; erector spinae [0.66 (0.18–1.15) 95% CI, p = 0.011]; transversus abdominis [0.70 (0.26–1.14) 95% CI, p = 0.004], and in three muscles after low-intensity training: quadratus lumborum [0.61 (0.17–1.05) 95% CI, p = 0.009]; transversus abdominis [0.14 (from − 0.15 to 0.43) 95% CI, p = 0.022]; piriformis [0.55 (0.13–0.98) 95% CI, p = 0.014]. The change in body surface pain radiation immediately after exercise was [− 10.87 (from − 17.51 to − 4.22) 95% CI, p = 0.003] for high-intensity training and [− 5.21 (from − 9.40 to − 1.03) 95% CI, p = 0.019] for low-intensity training. Conclusions TrA training could increase the PPT of the waist core muscles and reduce the radiation range of waist pain. The benefits of high-intensity training are higher than those of low-intensity training. Trial registration ChiCTR-TRC-13003701. Registered 18 October 2013. Code of ethical approval: 2018069.


2014 ◽  
Vol 9 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Purpose:To determine whether a submaximal cycling test could be used to monitor and prescribe high-intensity interval training (HIT).Methods:Two groups of male cyclists completed 4 HIT sessions over a 2-wk period. The structured-training group (SG; n = 8, VO2max = 58.4 ± 4.2 mL · min−1 · kg−1) followed a predetermined training program while the flexible-training group (FG; n = 7, VO2max = 53.9 ± 5.0 mL · min−1 · kg−1) had the timing of their HIT sessions prescribed based on the data of the Lamberts and Lambert Submaximal Cycle Test (LSCT).Results:Effect-size calculations showed large differences in the improvements in 40-km time-trial performance after the HIT training between SG (8 ± 45 s) and FG (48 ± 42 s). Heart-rate recovery, monitored during the study, tended to increase in FG and remain unchanged in SG.Conclusions:The results of the current study suggest that the LSCT may be a useful tool for coaches to monitor and prescribe HIT.


2007 ◽  
Vol 293 (4) ◽  
pp. E916-E922 ◽  
Author(s):  
Claire Thomas ◽  
David Bishop ◽  
Tom Moore-Morris ◽  
Jacques Mercier

This study investigated the effects of high-intensity training, with or without induced metabolic alkalosis, on lactate transporter (MCT1 and MCT4) and sodium bicarbonate cotransporter (NBC) content in rat skeletal muscles. Male Wistar rats performed high-intensity training on a treadmill 5 times/wk for 5 wk, receiving either sodium bicarbonate (ALK-T) or a placebo (PLA-T) prior to each training session, and were compared with a group of control rats (CON). MCT1, MCT4, and NBC content was measured by Western blotting in soleus and extensor digitorum longus (EDL) skeletal muscles. Citrate synthase (CS) and phosphofructokinase (PFK) activities and muscle buffer capacity (βm) were also evaluated. Following training, CS and PFK activities were significantly higher in the soleus only ( P < 0.05), whereas βm was significantly higher in both soleus and EDL ( P < 0.05). MCT1 (PLA-T: 30%; ALK-T: 23%) and NBC contents (PLA-T: 85%; ALK-T: 60%) increased significantly only in the soleus following training ( P < 0.01). MCT4 content in the soleus was significantly greater in ALK-T (115%) but not PLA-T compared with CON. There was no significant change in protein content in the EDL. Finally, NBC content was related only to MCT1 content in soleus ( r = 0.50, P < 0.01). In conclusion, these results suggest that MCT1, MCT4, and NBC undergo fiber-specific adaptive changes in response to high-intensity training and that induced alkalosis has a positive effect on training-induced changes in MCT4 content. The correlation between MCT1 and NBC expression suggests that lactate transport may be facilitated by NBC in oxidative skeletal muscle, which may in turn favor better muscle pH regulation.


Sign in / Sign up

Export Citation Format

Share Document