scholarly journals Augmentation of Oxygen Uptake Response through Inhalation of Molecular Hydrogen during an Incremental Exercise Test

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 248
Author(s):  
Amane Hori ◽  
Hisayoshi Ogata ◽  
Masatoshi Ichihara ◽  
Takaharu Kondo ◽  
Norio Hotta
Author(s):  
Hanapi M. Johari ◽  
Brinnell A. Caszo ◽  
Victor F. Knight ◽  
Steven A. Lumley ◽  
Aminuddin K. Abdul Hamid ◽  
...  

1996 ◽  
Vol 21 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Lennart Gullstrand

Six highly trained male elite rowers performed five sets of intermittent exercise on a rowing ergometer at competition intensity. Each set consisted of eight cycles of 15 s work and 15 s rest (15/15). Each set was repeated at 30-s intervals. Oxygen uptake and heart rate were continuously measured during each set. During the period between sets, microsamples of arterialized blood were obtained and later analyzed for lactate concentration. On two separate days, each subject also performed a 6-min bout of "all-out " exercise and a continuous incremental exercise test to fatigue on the rowing ergometer. During the intermittent rowing, no significant differences were detected in any of the measured variables between sets. Heart rate, oxygen uptake, and blood lactate averaged 89, 78, and 32%, respectively, of peak values measured during the continuous incremental exercise test. It is concluded that with rowing, the investigated 15/15 intermittent exercise model demands relatively high aerobic loading and low glycolytic activity. This exercise protocol may be considered an alternative model for training which allows rowers to work for prolonged periods of time at or slightly above competition intensity. Key words: Intermittent exercise, blood lactate, heart rate, oxygen uptake


2021 ◽  
Vol 80 (1) ◽  
pp. 163-172
Author(s):  
Kamil Michalik ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract The incremental exercise test is the most common method in assessing the maximal fat oxidation (MFO) rate. The main aim of the study was to determine whether the progressive linear RAMP test can be used to assess the maximal fat oxidation rate along with the intensities that trigger its maximal (FATmax) and its minimal (FATmin) values. Our study comprised 57 young road cyclists who were tested in random order. Each of them was submitted to two incremental exercise tests on an electro-magnetically braked cycle-ergometer - STEP (50 W·3 min-1) and RAMP (~0.278 W·s-1) at a 7-day interval. A stoichiometric equation was used to calculate the fat oxidation rate, while the metabolic thresholds were defined by analyzing ventilation gases. The Student’s T-test, Bland-Altman plots and Pearson’s linear correlations were resorted to in the process of statistical analysis. No statistically significant MFO variances occurred between the tests (p = 0.12) and its rate amounted to 0.57 ± 0.15 g·min-1 and 0.53 ± 0.17 g·min-1 in the STEP and RAMP, respectively. No statistically significant variances in the absolute and relative (to maximal) values of oxygen uptake and heart rate were discerned at the FATmax and FATmin intensities. The RAMP test displayed very strong oxygen uptake correlations between the aerobic threshold and FATmax (r = 0.93, R2 = 0.87, p < 0.001) as well as the anaerobic threshold and FATmin (r = 0.88, R2 = 0.78, p < 0.001). Our results corroborate our hypothesis that the incremental RAMP test as well as the STEP test are reliable tools in assessing MFO, FATmax and FATmin intensities.


2019 ◽  
Vol 26 (3) ◽  
pp. 9-13 ◽  
Author(s):  
Natalia Danek ◽  
Kamil Michalik ◽  
Rafał Hebisz ◽  
Marek Zatoń

AbstractIntroduction. The aim of the study was to verify the influence of warm-up before a ramp incremental exercise test with linearly increasing loads on the maximal values of physiological variables which determine performance.Material and methods. Thirteen healthy and physically active male students (age = 23.3 ± 1.5 years, body height = 179.1 ± 8.6 cm and body mass = 79.5 ± 9.1 kg) completed a cross-over comparison of two incremental exercise test interventions – an incremental exercise test with a 15-minute warm-up at an intensity of 60% of the maximal oxygen uptake obtained in the first incremental exercise test and the same test without warm-up.Results. The peak values of physiological variables were statistically significantly higher for the incremental exercise test with warm-up, the differences between tests being 2.66% for peak power output (p = 0.039, t = 2.312, ES = 0.24), 7.75% for peak oxygen uptake (p = 0.000, t = 5.225, ES = 0.56), 7.72% for peak minute ventilation (p = 0.005, t = 3.346, ES = 0.53) and 1.62% for peak heart rate (p = 0.019, t = 2.690, ES = 0.60).Conclusions. Warm-up before a ramp incremental exercise test resulted in higher values of maximal oxygen uptake, maximal minute ventilation, maximal heart rate and peak power output.


2020 ◽  
Vol 16 (5) ◽  
pp. 387-394
Author(s):  
J.C. Alves ◽  
A. Santos ◽  
P. Jorge ◽  
M.P. Lafuente

This study aimed to evaluate the physiological, haematological and biochemical changes during a treadmill incremental exercise test (IET). Animals were submitted to five stages of 6 min each, at 6, 7, 8, 9 and 10 mph, at an inclination of 5%. Blood samples were collected at rest (T0), immediately after exercise (T5) and after a 20 min rest period (T6), to determine complete blood count, urea, creatinine, creatine kinase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, total plasma protein, albumin, alkaline phosphatase (AP), cholesterol, triglycerides (Trig), Ca2+, Na+, K+ and Cl-. Blood lactate (BL), heart rate (HR), rectal temperature (RT) and glycaemia were measured at rest (T0), after each stage (T1-T5) and after the rest period (T6). Variations were recorded between T0 and T5 in red blood cells, haemoglobin, AP, Na+, K+ (P<0.01), Trig (P<0.05), Ca2+ and Cl- (P<0.02). Differences were observed in BL at T5 (P<0.02) and T6 (P<0.02), RT at T2-T6 (P<0.01), HR at T3-T5 (P<0.01) and glycaemia at T2-T4 (P<0.01) and T5 (P<0.05). This study is a novel description of the shifts of physical fit police working dogs during this IET protocol.


Sign in / Sign up

Export Citation Format

Share Document