Validity and Reliability of Short-Term Heart-Rate Variability from the Polar S810

2009 ◽  
Vol 41 (1) ◽  
pp. 243-250 ◽  
Author(s):  
DAVID NUNAN ◽  
GAY DONOVAN ◽  
DJORDJE G. JAKOVLJEVIC ◽  
LYNETTE D. HODGES ◽  
GAVIN R. H. SANDERCOCK ◽  
...  
Author(s):  
Kathryn E. Speer ◽  
Stuart Semple ◽  
Nenad Naumovski ◽  
Andrew J. McKune

Heart rate variability (HRV) is an accepted method for determining autonomic nervous system activity and cardiovascular risk in various populations. This study assessed the validity and reliability of a commercially available finger photoplethysmography (PPG) system for measuring pediatric HRV in a real-world setting. Sixteen healthy children (4.06 ± 0.58 years) were recruited. The PPG system was compared to the Polar H10 heart rate (HR) sensor validated against ECG (gold standard) for HRV measurement. Seated short-term resting R-R intervals were recorded simultaneously using both systems. Recordings were performed on 3 days at the participants’ school. Paired t-tests, effect sizes and Bland–Altman analyses determined the validity of the PPG system. The relative and absolute reliability of both systems were calculated. No HRV parameters were valid for the PPG system. Polar H10 yielded moderate (0.50–0.75) to good (0.75–0.90) relative reliability with R-R intervals and the standard deviation of instantaneous and continuous R-R variability ratio showing the best results (ICCs = 0.84). Polar H10 displayed better absolute reliability with the root mean square of successive differences, R-R intervals and HR showing the lowest values (TEM% < 12%). The use of the Polar H10 and not the PPG system is encouraged for HRV measurement of young children in an educational real-world setting.


Author(s):  
Joel S. Burma ◽  
Sarah Graver ◽  
Lauren N. Miutz ◽  
Alannah Macaulay ◽  
Paige V. Copeland ◽  
...  

Background: Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Methods: Thirty-six adults (18 males, age: 26 ± 5 years, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300-seconds in length and five UST time points (i.e., 30-seconds, 60-seconds, 120-seconds, 180-seconds, and 240-seconds) were extracted from the original 300-second recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA, and two-tailed paired t-tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency-domains. Results: No group differences were noted between all short-term and UST measures, for either time- (all p>0.202) or frequency-domain metrics (all p>0.086). A longer recording duration was associated with augmented validity and reliability, that was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60s, 240s, and 300s, respectively. Conclusions: Future studies employing UST HRV metrics, should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.


2015 ◽  
Vol 10 (5) ◽  
pp. 384-390 ◽  
Author(s):  
Ann Essner ◽  
Rita Sjöström ◽  
Pia Gustås ◽  
Laurie Edge-Hughes ◽  
Lena Zetterberg ◽  
...  

2021 ◽  
Author(s):  
Mahdieh Nejati Javaremi ◽  
Di Wu ◽  
Brenna Argall

Shared human-robot control for assistive machines can improve the independence of individuals with motor impairments. Monitoring elevated levels of workload can enable the assistive autonomy to adjust the control-sharing in an assist-as-needed way, to achieve a balance between user fatigue, stress and independent control. In this work, we aim to investigate how heart-rate variability features can be utilized to monitor elevated levels of mental workload while operating a powered wheelchair, and how that utilization might vary under different control interfaces. To that end, we conducted a 22 person study with three commercial interfaces. Our results show that the validity and reliability of using the ultra-short-term heart-rate variability features as predictors for workload indeed are affected by the type of interface in use.


2000 ◽  
Vol 32 (8) ◽  
pp. 1480-1484 ◽  
Author(s):  
RIKARD HEDELIN ◽  
G??RAN KENTT?? ◽  
URBAN WIKLUND ◽  
PER BJERLE ◽  
KARIN HENRIKSSON-LARS??N

2021 ◽  
Author(s):  
Luis Henrique Ceia Cipriano ◽  
Ytalo Gonçalves Borges ◽  
José Geraldo Mill ◽  
Helder Mauad ◽  
Maria Teresa Martins de Araújo ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Luyi Li ◽  
Dayu Hu ◽  
Wenlou Zhang ◽  
Liyan Cui ◽  
Xu Jia ◽  
...  

Abstract Background The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. Methods A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5–24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects’ residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. Results The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: − 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p <  0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. Conclusions Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied. Graphical abstract


2021 ◽  
Vol 11 (8) ◽  
pp. 959
Author(s):  
Konstantin G. Heimrich ◽  
Thomas Lehmann ◽  
Peter Schlattmann ◽  
Tino Prell

Recent evidence suggests that the vagus nerve and autonomic dysfunction play an important role in the pathogenesis of Parkinson’s disease. Using heart rate variability analysis, the autonomic modulation of cardiac activity can be investigated. This meta-analysis aims to assess if analysis of heart rate variability may indicate decreased parasympathetic tone in patients with Parkinson’s disease. The MEDLINE, EMBASE and Cochrane Central databases were searched on 31 December 2020. Studies were included if they: (1) were published in English, (2) analyzed idiopathic Parkinson’s disease and healthy adult controls, and (3) reported at least one frequency- or time-domain heart rate variability analysis parameter, which represents parasympathetic regulation. We included 47 studies with 2772 subjects. Random-effects meta-analyses revealed significantly decreased effect sizes in Parkinson patients for the high-frequency spectral component (HFms2) and the short-term measurement of the root mean square of successive normal-to-normal interval differences (RMSSD). However, heterogeneity was high, and there was evidence for publication bias regarding HFms2. There is some evidence that a more advanced disease leads to an impaired parasympathetic regulation. In conclusion, short-term measurement of RMSSD is a reliable parameter to assess parasympathetically impaired cardiac modulation in Parkinson patients. The measurement should be performed with a predefined respiratory rate.


Sign in / Sign up

Export Citation Format

Share Document