Solid^|^#8211;Liquid Extraction and Transport of Metal Ion with the Polymer Inclusion Membrane Using a New Alkylated Pyrrolidinecarboxylic Acid

2012 ◽  
Vol 45 (10) ◽  
pp. 816-822 ◽  
Author(s):  
Shintaro Kanemaru ◽  
Tatsuya Oshima ◽  
Yoshinari Baba
ACS Omega ◽  
2020 ◽  
Vol 5 (22) ◽  
pp. 12989-12995
Author(s):  
Takafumi Hanada ◽  
Mochamad Lutfi Firmansyah ◽  
Wataru Yoshida ◽  
Fukiko Kubota ◽  
Spas D. Kolev ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 288
Author(s):  
Jeniffer García-Beleño ◽  
Eduardo Rodríguez de San Miguel

An optimization of the composition of polymer inclusion membrane (PIM)-based optodes, and their exposure times to metal ion solutions (Hg(II), Cd(II), and Pb(II)) was performed using two different chromophores, diphenylthiocarbazone (dithizone) and 1-(2-pyridylazo)-2-naphthol (PAN). Four factors were evaluated (chromophore (0.06–1 mg), cellulose triacetate (25–100 mg) and plasticizer amounts (25–100 mg), and exposure time (20–80 min)). Derringer’s desirability functions values were employed as response variables to perform the optimization obtained from the results of three different processes of spectral data treatment: two full-spectrum methods (M1 and M3) and one band-based method (M2). The three different methods were compared using a heatmap of the coefficients and dendrograms of the Principal Component Analysis (PCA)reductions of their desirability functions. The final recommended M3 processing method, i.e., using the scores values of the first two principal components in PCA after subtraction of the normalized spectra of the membranes before and after complexation, gave more discernable differences between the PIMs in the Design of Experiments (DoE), as the nodes among samples appeared at longer distances and varyingly distributed in the dendrogram analysis. The optimal values were time of 35–65 min, 0.53 mg–1.0 mg of chromophores, plasticizers 34.4–71.9 of chromophores, and 62.5–100 mg of CTA, depending on the metal ion. In addition, the method yielded the best outcomes in terms of interpretability and an easily discernable color change so that it is recommended as a novel optimization method for this kind of PIM optode.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 385
Author(s):  
Ilona Pyszka ◽  
Elzbieta Radzyminska-Lenarcik

The new polymer inclusion membrane (PIM) with ethylenediamine-bis-acetylacetone (EDAB-acac) matrix was used for the separation of Zn(II) solutions containing non-ferrous metal ions (Co(II), Ni(II) Cu(II), Cd(II)). The effective conditions for carrying out transport studies by PIMs were determined on the basis of solvent extraction studies. The values of the stability constants and partition coefficients of M(II)-EDAB-acac complexes were determined from the extraction studies. The stability constants increase in series Ni(II) < Cu(II) < Co(II) < Cd(II) < Zn(II), and their logarithms are 8.85, 10.61, 12.73, 14.50, and 16.84, respectively. The transport selectivity of the PIMs were: Zn(II) > Cd(II) > Co(II) > Cu(II) > Ni(II). The established stability constants of the complexes also decrease in this order. The values of three parameters: initial flux, selectivity coefficient, and recovery factor of a given metal after 12 h were selected for the comparative analysis of the transport process. The highest values of the initial fluxes were received for Zn(II), Cd(II), and Co(II). They are, depending on the composition of the mixture, in the range 9.87–10.53 µmol/m2, 5.26–5.61 µmol/m2, and 7.43–7.84 µmol/m2 for Zn(II), Co(II), and Cd(II), respectively. The highest recovery factors were observed for Zn(II) ions (90–98.0%). For Cd, Co and Cu, the recovery factors are high and are within the range 76–83%, 64–79%, and 51–66%, respectively.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 285
Author(s):  
Joanna Konczyk ◽  
Wojciech Ciesielski

A facilitated transport of Pb(II) through polymer inclusion membrane (PIM) containing 1,8,15,22-tetra(1-heptyl)-calixresorcin[4]arene and its tetra- and octasubstituted derivatives containing phosphoryl, thiophosphoryl or ester groups as an ion carrier was investigated. The efficiency of Pb(II) removal from aqueous nitrate solutions was considered as a function of the composition of membrane (effect of polymer, plasticizer, and carrier), feed (effect of initial metal concentration and presence of other metal ions) and stripping phases, and temperature of the process conducting. Two kinetic models were applied for the transport description. The highest Pb(II) ions removal efficiency was obtained for the membrane with tetrathiophosphorylated heptyl-calixresorcin[4]arene as an ion carrier. The activation energy value, found from Eyring plot to be equal 38.7 ± 1.3 kJ/mol, suggests that the transport process is controllable both by diffusion and chemical reaction. The competitive transport of Pb(II) over Zn(II), Cd(II), and Cr(III) ions across PIMs under the optimal conditions was also performed. It was found that the Cr(III) ions’ presence in the feed phase disturb effective re-extraction of Pb(II) ions from membrane to stripping phase. Better stability of PIM-type than SLM-type membrane was found.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Baoying Wang ◽  
Qiaolin Lang ◽  
Ming Tan ◽  
Heqing Jiang ◽  
Lingyun Wang ◽  
...  

2008 ◽  
Vol 310 (1-2) ◽  
pp. 438-445 ◽  
Author(s):  
Ounissa Kebiche-Senhadji ◽  
Lynda Mansouri ◽  
Sophie Tingry ◽  
Patrick Seta ◽  
Mohamed Benamor

Sign in / Sign up

Export Citation Format

Share Document