Combination of Time-of-Flight Mass Analysers with Magnetic-Sector Instruments: In-Line and Perpendicular Arrangements. Applications to Poly(Ethylene Glycol) with Long-Chain end Groups

2000 ◽  
Vol 6 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Andrew R. Botrill ◽  
Anastassios E. Giannakopulos ◽  
Allen Millichope ◽  
Ken S. Lee ◽  
Peter J. Derrick

High-energy collision-induced dissociation has been shown to provide extensive and detailed structural information on poly(ethylene glycol) with palmitoyl end-groups. Fragmentation within the end-groups provides direct information on their structures. Both in-line time-of-flight (TOF) and orthogonal TOF have been used for the measurement of fragment ions. Use of TOF as the second stage of mass spectrometry has facilitated exploitation of the pulsed method of ionisation matrix-assisted laser desorption/ionisation (MALDI). The orthogonal TOF instrument is used with a liquid secondary-ion mass spectrometry source. The laboratory-frame collision energies were different for in-line and orthogonal TOF, being 8–12 keV in the former and 800 eV in the latter. The tandem mass spectra were similar for the in-line experiment with either He or Xe collision gas and the orthogonal experiment with Xe. Mechanisms proposed for the fragmentations involve homolytic cleavage (C–H and backbone bonds) and invoke non-ergodicity.


2002 ◽  
Vol 37 (7) ◽  
pp. 699-708 ◽  
Author(s):  
K. Norrman ◽  
A. Papra ◽  
F. S. Kamounah ◽  
N. Gadegaard ◽  
N. B. Larsen




Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.



2006 ◽  
Vol 39 (26) ◽  
pp. 9396-9401 ◽  
Author(s):  
Mark A. Even ◽  
Chunyan Chen ◽  
Jie Wang ◽  
Zhan Chen






Sign in / Sign up

Export Citation Format

Share Document