scholarly journals RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template

RNA ◽  
2014 ◽  
Vol 20 (5) ◽  
pp. 644-655 ◽  
Author(s):  
Dave A. Pai ◽  
Craig D. Kaplan ◽  
Hye Kyong Kweon ◽  
Kenji Murakami ◽  
Philip C. Andrews ◽  
...  
1988 ◽  
Vol 8 (8) ◽  
pp. 3114-3121
Author(s):  
J A Knezetic ◽  
G A Jacob ◽  
D S Luse

We have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, we demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that our observations are not the result of slow displacement of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.


1988 ◽  
Vol 8 (8) ◽  
pp. 3114-3121 ◽  
Author(s):  
J A Knezetic ◽  
G A Jacob ◽  
D S Luse

We have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, we demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that our observations are not the result of slow displacement of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.


1989 ◽  
Vol 260 (3) ◽  
pp. 795-801 ◽  
Author(s):  
L De Mercoyrol ◽  
C Job ◽  
D Job

Incubation of purified wheat-germ RNA polymerase II with poly[d(A-T)] template, Mn2+, U-A dinucleoside monophosphate primer and UTP substrate resulted in catalytic formation of the trinucleoside diphosphate U-A-U, in accordance with the results of previous studies. Both Sarkosyl and heparin inhibited completely and immediately (within less than 1 min) U-A-U synthesis, if either of these compounds was added to the assays during the progress of the reaction. This behaviour is in marked contrast to that reported for single-step addition reactions catalysed by Escherichia coli RNA polymerase on the same template [Sylvester & Cashel (1980) Biochemistry 19, 1069-1074]. However, treatment of the transcription complexes with Sarkosyl or heparin for periods sufficient to abolish U-A-U formation completely did not suppress completely the ability of such complexes to elongate RNA chains. Hence, the effect of Sarkosyl or heparin on the rate of U-A-U synthesis was predominantly due to change in the rate (or in the mechanism) of trinucleotide product release by the transcription complexes. Furthermore, once U-A-U synthesis has begun on the poly[d(A-T)] template, the transcription complexes became resistant to the action of a competitor DNA such as poly[d(G-C)]. The results are consistent with a model where at least a sizeable fraction of the enzyme molecules remains associated with the DNA template upon formation of a single phosphodiester bond.


2004 ◽  
Vol 24 (3) ◽  
pp. 1122-1131 ◽  
Author(s):  
Diane Forget ◽  
Marie-France Langelier ◽  
Cynthia Thérien ◽  
Vincent Trinh ◽  
Benoit Coulombe

ABSTRACT The topological organization of a TATA binding protein-TFIIB-TFIIF-RNA polymerase II (RNAP II)-TFIIE-promoter complex was analyzed using site-specific protein-DNA photo-cross-linking of gel-purified complexes. The cross-linking results for the subunits of RNAP II were used to determine the path of promoter DNA against the structure of the enzyme. The results indicate that promoter DNA wraps around the mobile clamp of RNAP II. Cross-linking of TFIIF and TFIIE both upstream of the TATA element and downstream of the transcription start site suggests that both factors associate with the RNAP II mobile clamp. TFIIEα closely approaches promoter DNA at nucleotide −10, a position immediately upstream of the transcription bubble in the open complex. Increased stimulation of transcription initiation by TFIIEα is obtained when the DNA template is artificially premelted in the −11/−1 region, suggesting that TFIIEα facilitates open complex formation, possibly through its interaction with the upstream end of the partially opened transcription bubble. These results support the central roles of the mobile clamp of RNAP II and TFIIE in transcription initiation.


1987 ◽  
Vol 244 (1) ◽  
pp. 151-157 ◽  
Author(s):  
C Job ◽  
J Dietrich ◽  
D Shire ◽  
M Teissere ◽  
D Job

A kinetic study of the effect of elongating nucleotide concentration on the reactions of abortive elongation catalysed by wheat-germ RNA polymerase II on a poly[d(A-T)] template suggests that the shift from abortive to productive elongation may involve the participation of at least two nucleotides, according to a mechanism very similar to that reported for Escherichia coli RNA polymerase. Experiments performed with non-complementary nucleotides with respect to the DNA template, and with substrate derivatives, allow an analysis of the substrate specificity during these reactions. Similar experiments performed with poly[d(A-A-T)].poly[d(T-T-A)] as template provide a starting point for a better understanding of the effect of DNA sequence on the rates of abortive and productive elongation catalysed by the plant enzyme.


2021 ◽  
Author(s):  
Matthew P Swaffer ◽  
Georgi K Marinov ◽  
Huan Zheng ◽  
Andrew W Jones ◽  
Anshul Kundaje ◽  
...  

A defining feature of cellular growth is that protein and mRNA amounts scale with cell size so that concentrations remain approximately constant, thereby ensuring similar reaction rates and efficient biosynthesis. A key component of this biosynthetic scaling is the scaling of mRNA amounts with cell size, which occurs even among cells with the same DNA template copy number. Here, we identify RNA polymerase II as a major limiting factor increasing transcription with cell size. Other components of the transcriptional machinery are only minimally limiting and the chromatin environment is largely invariant with size. However, RNA polymerase II activity does not increase in direct proportion to cell size, inconsistent with previously proposed DNA-titration models. Instead, our data support a dynamic equilibrium model where the rate of polymerase loading is proportional to the unengaged nucleoplasmic polymerase concentration. This sublinear transcriptional increase is then balanced by a compensatory increase in mRNA stability as cells get larger. Taken together, our results show how limiting RNA polymerase II and feedback on mRNA stability work in concert to ensure the precise scaling of mRNA amounts across the physiological cell size range.


Sign in / Sign up

Export Citation Format

Share Document