scholarly journals KDM3A regulates alternative splicing of cell-cycle genes following DNA damage

RNA ◽  
2021 ◽  
pp. rna.078796.121
Author(s):  
Mai Baker ◽  
Mayra Petasny ◽  
Nadeen Taqatqa ◽  
Mercedes Bentata ◽  
Gillian Kay ◽  
...  
2020 ◽  
Author(s):  
Mai Baker ◽  
Mayra Petasny ◽  
Mercedes Bentata ◽  
Gillian Kay ◽  
Eden Engal ◽  
...  

ABSTRACTChanges in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 de-methylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for a proper cell cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell cycle regulation. Furthermore we found that KDM3A’s demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A’s protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.


2019 ◽  
Vol 47 (21) ◽  
pp. 11197-11208 ◽  
Author(s):  
Amy E Schade ◽  
Martin Fischer ◽  
James A DeCaprio

Abstract Cell cycle gene expression occurs in two waves. The G1/S genes encode factors required for DNA synthesis and the G2/M genes contribute to mitosis. The Retinoblastoma protein (RB) and DREAM complex (DP, RB-like, E2F4 and MuvB) cooperate to repress all cell cycle genes during G1 and inhibit entry into the cell cycle. DNA damage activates p53 leading to increased levels of p21 and inhibition of cell cycle progression. Whether the G1/S and G2/M genes are differentially repressed by RB and the RB-like proteins p130 and p107 in response to DNA damage is not known. We performed gene expression profiling of primary human fibroblasts upon DNA damage and assessed the effects on G1/S and G2/M genes. Upon p53 activation, p130 and RB cooperated to repress the G1/S genes. In addition, in the absence of RB and p130, p107 contributed to repression of G1/S genes. In contrast, G2/M genes were repressed by p130 and p107 after p53 activation. Furthermore, repression of G2/M genes by p107 and p130 led to reduced entry into mitosis. Our data demonstrates specific roles for RB, p130-DREAM, and p107-DREAM in p53 and p21 mediated repression of cell cycle genes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3761-3761
Author(s):  
Jason Farrar ◽  
Michael Ochs ◽  
David W Lee ◽  
C.C. Talbot ◽  
Jonathan Buckley ◽  
...  

Abstract While mutations of splicing and epigenetic factors have been reported in adult AML and related myeloid disorders, relatively few such changes have been identified in pediatric AML. We previously identified a chromatin remodeling helicase, PASG (SMARCA6, HELLS, LSH), by down-regulation in AML cell lines following cytokine withdrawal and identified an alternatively spliced variant lacking a highly conserved (STRAGGLG) domain. To assess the prevalence of this splicing variant (PASGΔ75) in pediatric AML, we tested 167 diagnostic specimens from the TARGET-AML cohort for fractional PASGΔ75 expression (PASGΔ75/PASG) using a discriminatory RT-qPCR assay. These studies demonstrated a broad, continuous distribution of PASGΔ75 with right skew (mean PASGΔ75: 26%, interquartile range: 9% – 41%) that was not significantly associated with cytogenetic class (inv16, t(8;21), MLL, normal) or FAB subtype. For further comparison, specimens were quantized by PASGΔ75 quartile. Given reported associations between loss of PASG function and abnormalities of genomic methylation, we tested 48 AML specimens at the extremes of the PASGΔ75 distribution for total 5-methylcytosine (5-mC) content by liquid chromatography/tandem mass spectrometry. The mean total methylation was significantly lower in the high compared to the low PASGΔ75 groups (mean 5-mC 3.95% vs. 4.22% of cytosine, p=0.015 Mann-Whitney). To identify specific regions of altered methylation, we used high-throughput sequencing of DNA enriched by pull-down with the methyl binding domain fragment of MBD2 (MBD-Seq). Comparison of summed methylation signal across regions flanking RefSeq transcriptional start sites (TSS) showed the expected decrease in methylation just upstream of the TSS in both groups. However, methylation more distal to the TSS was proportionally lower in PASGΔ75 high than PASGΔ75 low samples (Fig 1a). To evaluate methylation at CpG islands (CGI), UCSC CGI were scaled to 500 bp and MBD-Seq data were summed across 20Kb flanking CGI. While both groups showed the anticipated increase in methylation signal on CGI, methylation in the shore regions immediately flanking CGI was proportionally lower in high PASGΔ75 compared to low PASGΔ75 samples (Fig 1b), further suggesting epigenetic differences between these sample groups. Because we were unable to identify sequence variants in PASG intron 18 or flanking exons that might explain alternative splicing, we asked whether expression of PASGΔ75 was associated with global changes in transcript splicing. We evaluated gene expression patterns on the Affymetrix HuGene array, with assessment of alternative splicing using Partek software alternative splicing (altsplice) algorithm for quartile-grouped samples. In contrast to comparison of adjacent quartile groups, which showed modest changes in expression and relatively few transcripts with significant altsplice scores, comparison of the highest and lowest quartile samples showed marked changes in gene expression and a large number of alternatively spiced transcripts as assessed by significance of the altsplice score (Fig 2). In addition to splicing changes, these analyses suggested marked differences in gene expression patterns of AML specimens grouped by PASGΔ75 quartile, with clear separation of Q1 and Q4 samples by principal components analysis. Using a conservative Wilcoxon gene sets test and limiting ourselves to small, curated Biocarta pathways, we found expression patterns associated with high deletion variant expression strongly linked to overlapping pathways involving DNA repair, replication, and cell cycle progression. Table Pathways (Biocarta) Pathway Class Benjamini Hochberg Corrected p-Value ATR/BRCA1/BRCA2 DNA Damage Response 1.3E-6 RB/DNA Damage DNA Damage Response 3.5E-3 p27 Phosphorylation Cell Cycle Progression 3.5E-3 G2/M Checkpoint Cell Cycle Progression 3.5E-3 G1/S Checkpoint Cell Cycle Progression 4.1E-3 PLK3 Cell Cycle Progression 4.1E-3 MEF2D Apoptosis 0.01 SRC/PTPa Cell Cycle Progression 0.02 Mitochondrial Acetyl-Co Shuttle Metabolism 0.02 p53 Signaling DNA Damage Response 0.04 E2F-1 Cell Cycle Progression 0.04 ATM Signaling DNA Damage Response 0.04 These data suggest the existence of a previously unrecognized AML subclass characterized by widespread and coordinated changes in RNA expression, alternative transcript splicing, and epigenetic modifications. Disclosures: No relevant conflicts of interest to declare.


Cell Reports ◽  
2016 ◽  
Vol 17 (8) ◽  
pp. 1990-2003 ◽  
Author(s):  
Lulzim Shkreta ◽  
Johanne Toutant ◽  
Mathieu Durand ◽  
James L. Manley ◽  
Benoit Chabot

Author(s):  
Monica E. Reyes ◽  
Jianzhong Ma ◽  
Megan L. Grove ◽  
Joann L. Ater ◽  
Alanna C. Morrison ◽  
...  

Tumor Biology ◽  
2015 ◽  
Vol 36 (10) ◽  
pp. 8127-8136 ◽  
Author(s):  
Jing Liu ◽  
Jin Lin ◽  
Lin-Feng Huang ◽  
Bo Huang ◽  
Yan-Mei Xu ◽  
...  

2020 ◽  
Author(s):  
Hendrika A. Segeren ◽  
Lotte M. van Rijnberk ◽  
Eva Moreno ◽  
Frank M. Riemers ◽  
Ruixue Yuan ◽  
...  

AbstractE2F transcription factors control the expression of cell cycle genes. Cancers often demonstrate enhanced E2F target gene expression, which can be explained by increased percentages of replicating cells. However, we now demonstrate in human cancer biopsies that individual neoplastic cells display abnormally high levels of E2F-dependent transcription. To mimic this situation, we deleted the atypical E2F repressors (E2F7/8) in untransformed cells. Individual cells with elevated E2F-activity during S/G2-phase failed to exit the cell cycle after DNA damage and underwent mitosis. In contrast, wild type cells completed S-phase and then exit the cell cycle by activating the APC/CCdh1 via repression of the E2F-target Emi1. Strikingly, many arrested wildtype cells could eventually inactivate APC/CCdh1 to execute a second round of DNA replication and mitosis, thereby becoming tetraploid. Cells with elevated E2F-transcription fail to exit the cell cycle after DNA damage which potentially causes genomic instability, promotes malignant progression and reduces drug sensitivity.


Sign in / Sign up

Export Citation Format

Share Document