scholarly journals Using quantitative reconstitution to investigate multi-component condensates

RNA ◽  
2021 ◽  
pp. rna.079008.121
Author(s):  
Simon L Currie ◽  
Michael K Rosen

Many biomolecular condensates are thought to form via liquid-liquid phase separation (LLPS) of multivalent macromolecules. For those that form through this mechanism, our understanding has benefitted significantly from biochemical reconstitutions of key components and activities. Reconstitutions of RNA-based condensates to date have mostly been based on relatively simple collections of molecules. However, proteomics and sequencing data indicate that natural RNA-based condensates are enriched in hundreds to thousands of different components, and genetic data suggest multiple interactions can contribute to condensate formation to varying degrees. In this perspective we describe recent progress in understanding RNA-based condensates through different levels of biochemical reconstitutions, as a means to bridge the gap between simple in vitro reconstitution and cellular analyses. Complex reconstitutions provide insight into the formation, regulation, and functions of multi-component condensates. We focus on two RNA-protein condensate case studies: stress granules and RNA processing bodies (P bodies), and examine the evidence for cooperative interactions among multiple components promoting LLPS. An important concept emerging from these studies is that composition and stoichiometry regulate biochemical activities within condensates. Based on the lessons learned from stress granules and P bodies we discuss forward-looking approaches to understand the thermodynamic relationships between condensate components, with the goal of developing predictive models of composition and material properties, and their effects on biochemical activities. We anticipate that quantitative reconstitutions will facilitate understanding of the complex thermodynamics and functions of diverse RNA-protein condensates.

2020 ◽  
Vol 133 (16) ◽  
pp. jcs242487 ◽  
Author(s):  
Claire L. Riggs ◽  
Nancy Kedersha ◽  
Pavel Ivanov ◽  
Paul Anderson

ABSTRACTStress granules (SGs) and processing bodies (PBs) are membraneless ribonucleoprotein-based cellular compartments that assemble in response to stress. SGs and PBs form through liquid–liquid phase separation that is driven by high local concentrations of key proteins and RNAs, both of which dynamically shuttle between the granules and the cytoplasm. SGs uniquely contain certain translation initiation factors and PBs are uniquely enriched with factors related to mRNA degradation and decay, although recent analyses reveal much broader protein commonality between these granules. Despite detailed knowledge of their composition and dynamics, the function of SGs and PBs remains poorly understood. Both, however, contain mRNAs, implicating their assembly in the regulation of RNA metabolism. SGs may also serve as hubs that rewire signaling events during stress. By contrast, PBs may constitute RNA storage centers, independent of mRNA decay. The aberrant assembly or disassembly of these granules has pathological implications in cancer, viral infection and neurodegeneration. Here, we review the current concepts regarding the formation, composition, dynamics, function and involvement in disease of SGs and PBs.


Author(s):  
M. Sankaranarayanan ◽  
Ryan J. Emenecker ◽  
Marcus Jahnel ◽  
Irmela R. E. A. Trussina ◽  
Matt Wayland ◽  
...  

ABSTRACTBiomolecular condensates that form via liquid-liquid phase separation can exhibit diverse physical states. Despite considerable progress, the relevance of condensate physical states forin vivobiological function remains limited. Here, we investigated the physical properties ofin vivoprocessing bodies (P bodies) and their impact on mRNA storage in matureDrosophilaoocytes. We show that the conserved DEAD-box RNA helicase Me31B forms P body condensates which adopt a less dynamic, arrested physical state. We demonstrate that structurally distinct proteins and hydrophobic and electrostatic interactions, together with RNA and intrinsically disordered regions, regulate the physical properties of P bodies. Finally, using live imaging, we show that the arrested state of P bodies is required to prevent the premature release ofbicoid(bcd) mRNA, a body axis determinant, and that P body dissolution leads tobcdrelease. Together, this work establishes a role for arrested states of biomolecular condensates in regulating cellular function in a developing organism.


2019 ◽  
Author(s):  
Richard J. Wheeler ◽  
Hyun O. Lee ◽  
Ina Poser ◽  
Arun Pal ◽  
Thom Doeleman ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with few avenues for treatment. Many proteins implicated in ALS associate with stress granules, which are examples of liquid-like compartments formed by phase separation. Aberrant phase transition of stress granules has been implicated in disease, suggesting that modulation of phase transitions could be a possible therapeutic route. Here, we combine cell-based and protein-based screens to show that lipoamide, and its related compound lipoic acid, reduce the propensity of stress granule proteins to aggregate in vitro. More significantly, they also prevented aggregation of proteins over the life time of Caenorhabditis elegans. Observations that they prevent dieback of ALS patient-derived (FUS mutant) motor neuron axons in culture and recover motor defects in Drosophila melanogaster expressing FUS mutants suggest plausibility as effective therapeutics. Our results suggest that altering phase behaviour of stress granule proteins in the cytoplasm could be a novel route to treat ALS.


2021 ◽  
Author(s):  
Nazanin Farahi ◽  
Tamas Lazar ◽  
Shoshana J. Wodak ◽  
Peter Tompa ◽  
Rita Pancsa

AbstractLiquid-liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles (MLOs), i.e. functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integration of data on LLPS-associated proteins from dedicated databases revealed only modest overlap between them and resulted in a confident set of 89 human LLPS driver proteins. Since LLPS is highly concentration-sensitive, the underlying experiments are often criticized for applying higher-than-physiological protein concentrations. To clarify this issue, we performed a naive comparison of in vitro applied and quantitative proteomics-derived protein concentrations and discuss a number of considerations that rationalize the choice of apparently high in vitro concentrations in most LLPS studies. The validity of in vitro LLPS experiments is further supported by in vivo phase-separation experiments and by the observation that the corresponding genes show a strong propensity for dosage sensitivity. This observation implies that the availability of the respective proteins is tightly regulated in cells to avoid erroneous condensate formation. In all, we propose that although local protein concentrations are practically impossible to determine in cells, proteomics-derived cellular concentrations should rather be considered as lower limits of protein concentrations, than strict upper bounds, to be respected by in vitro experiments.


2018 ◽  
Author(s):  
Roubina Tatavosian ◽  
Samantha Kent ◽  
Kyle Brown ◽  
Tingting Yao ◽  
Huy Nguyen Duc ◽  
...  

AbstractPolycomb group (PcG) proteins are master regulators of development and differentiation. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the nucleus of cells and these condensates are the physical sites of PcG-targeted gene silencing. However, the physiochemical principles underlying the PcG condensate formation remain unknown. Here we show that Polycomb repressive complex 1 (PRC1) protein Cbx2, one member of the Cbx family proteins, contains a long stretch of intrinsically disordered region (IDR). Cbx2 undergoes phase separation to form condensates. Cbx2 condensates exhibit liquid-like properties and can concentrate DNA and nucleosomes. We demonstrate that the conserved residues within the IDR promote the condensate formation in vitro and in vivo. We further indicate that H3K27me3 has minimal effects on the Cbx2 condensate formation while depletion of core PRC1 subunits facilitates the condensate formation. Thus, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that PcG-bound chromatin is in part organized through phase-separated condensates.


2018 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F. Mugler ◽  
...  

AbstractProcessing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. We recently identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo [Mugler et al., 2016]. Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1019
Author(s):  
Chenrong Wang ◽  
Congshan Yang ◽  
Jing Liu ◽  
Qun Liu

Background: Neospora caninum is an apicomplexan parasite that infects many mammals and particularly causes abortion in cattle. The key factors in its wide distribution are its virulence and ability to transform between tachyzoite and bradyzoite forms. However, the factors are not well understood. Although Puf protein (named after Pumilio from Drosophila melanogaster and fem-3 binding factor from Caenorhabditis elegans) have a functionally conserved role in promoting proliferation and inhibiting differentiation in many eukaryotes, the function of the Puf proteins in N. caninum is poorly understood. Methods: The CRISPR/CAS9 system was used to identify and study the function of the Puf protein in N. caninum. Results: We showed that N. caninum encodes a Puf protein, which was designated NcPuf1. NcPuf1 is found in the cytoplasm in intracellular parasites and in processing bodies (P-bodies), which are reported for the first time in N. caninum in extracellular parasites. NcPuf1 is not needed for the formation of P-bodies in N. caninum. The deletion of NcPuf1 (ΔNcPuf1) does not affect the differentiation in vitro and tissue cysts formation in the mouse brain. However, ΔNcPuf1 resulted in decreases in the proliferative capacity of N. caninum in vitro and virulence in mice. Conclusions: Altogether, the disruption of NcPuf1 does not affect bradyzoites differentiation, but seriously impairs tachyzoite proliferation in vitro and virulence in mice. These results can provide a theoretical basis for the development of attenuated vaccines to prevent the infection of N. caninum.


Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. eaay7108 ◽  
Author(s):  
Jason E. Lee ◽  
Peter I. Cathey ◽  
Haoxi Wu ◽  
Roy Parker ◽  
Gia K. Voeltz

Tethered interactions between the endoplasmic reticulum (ER) and other membrane-bound organelles allow for efficient transfer of ions and/or macromolecules and provide a platform for organelle fission. Here, we describe an unconventional interface between membraneless ribonucleoprotein granules, such as processing bodies (P-bodies, or PBs) and stress granules, and the ER membrane. We found that PBs are tethered at molecular distances to the ER in human cells in a tunable fashion. ER-PB contact and PB biogenesis were modulated by altering PB composition, ER shape, or ER translational capacity. Furthermore, ER contact sites defined the position where PB and stress granule fission occurs. We thus suggest that the ER plays a fundamental role in regulating the assembly and disassembly of membraneless organelles.


2011 ◽  
Vol 192 (4) ◽  
pp. 583-598 ◽  
Author(s):  
Cornelia Kurischko ◽  
Hong Kyung Kim ◽  
Venkata K. Kuravi ◽  
Juliane Pratzka ◽  
Francis C. Luca

The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1–mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1–mRNA interactions with P-bodies and stress granules, leading to translational repression.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tie-Mei Li ◽  
Jing Ren ◽  
Dylan Husmann ◽  
John P. Coan ◽  
Or Gozani ◽  
...  

Abstract The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-catenin and oncogenesis. However, the molecular mechanism by which APC promotes β-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple β-catenin and Axin interacting sites, undergoes liquid–liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and β-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the β-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of β-catenin.


Sign in / Sign up

Export Citation Format

Share Document