scholarly journals Regulation of poly(A) binding protein function in translation: Characterization of the Paip2 homolog, Paip2B

RNA ◽  
2006 ◽  
Vol 12 (8) ◽  
pp. 1556-1568 ◽  
Author(s):  
J. J. Berlanga
Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 516 ◽  
Author(s):  
Dominik Marko ◽  
Asmaa El-shershaby ◽  
Filomena Carriero ◽  
Stephan Summerer ◽  
Angelo Petrozza ◽  
...  

The identification of heat stress (HS)-resilient germplasm is important to ensure food security under less favorable environmental conditions. For that, germplasm with an altered activity of factors regulating the HS response is an important genetic tool for crop improvement. Heat shock binding protein (HSBP) is one of the main negative regulators of HS response, acting as a repressor of the activity of HS transcription factors. We identified a TILLING allele of Solanum lycopersicum (tomato) HSBP1. We examined the effects of the mutation on the functionality of the protein in tomato protoplasts, and compared the thermotolerance capacity of lines carrying the wild-type and mutant alleles of HSBP1. The methionine-to-isoleucine mutation in the central heptad repeats of HSBP1 leads to a partial loss of protein function, thereby reducing the inhibitory effect on Hsf activity. Mutant seedlings show enhanced basal thermotolerance, while mature plants exhibit increased resilience in repeated HS treatments, as shown by several physiological parameters. Importantly, plants that are homozygous for the wild-type or mutant HSBP1 alleles showed no significant differences under non-stressed conditions. Altogether, these results indicate that the identified mutant HSBP1 allele can be used as a genetic tool in breeding, aiming to improve the thermotolerance of tomato varieties.


1984 ◽  
Vol 104 (4_Supplb) ◽  
pp. S91-S92
Author(s):  
G. DAXENBICHLER ◽  
E. H. MOSER
Keyword(s):  
Rat Lung ◽  

2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


Biochemistry ◽  
2013 ◽  
Vol 52 (9) ◽  
pp. 1583-1593 ◽  
Author(s):  
Ki-Young Lee ◽  
Ji-Hun Kim ◽  
Kyu-Yeon Lee ◽  
Jiyun Lee ◽  
Ingyun Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document