Molecular identification of Sphingomonas sp. A1 Alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution

2005 ◽  
Vol 99 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Wataru Hashimoto ◽  
Osamu Miyake ◽  
Akihito Ochiai ◽  
Kousaku Murata
Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 323 ◽  
Author(s):  
Qian Li ◽  
Fu Hu ◽  
Benwei Zhu ◽  
Yun Sun ◽  
Zhong Yao

Alginate lyases have been widely used to prepare alginate oligosaccharides in food, agricultural, and medical industries. Therefore, discovering and characterizing novel alginate lyases with excellent properties has drawn increasing attention. Herein, a novel alginate lyase FsAlyPL6 of Polysaccharide Lyase (PL) 6 family is identified and biochemically characterized from Flammeovirga sp. NJ-04. It shows highest activity at 45 °C and could retain 50% of activity after being incubated at 45 °C for 1 h. The Thin-Layer Chromatography (TLC) and Electrospray Ionization Mass Spectrometry (ESI-MS) analysis indicates that FsAlyPL6 endolytically degrades alginate polysaccharide into oligosaccharides ranging from monosaccharides to pentasaccharides. In addition, the action pattern of the enzyme is also elucidated and the result suggests that FsAlyPL6 could recognize tetrasaccharide as the minimal substrate and cleave the glycosidic bonds between the subsites of −1 and +3. The research provides extended insights into the substrate recognition and degradation pattern of PL6 alginate lyases, which may further expand the application of alginate lyases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Luyao Tang ◽  
Enwen Guo ◽  
Lan Zhang ◽  
Ying Wang ◽  
Shan Gao ◽  
...  

Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 338
Author(s):  
Shigeyuki Kawai ◽  
Wataru Hashimoto

4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 388
Author(s):  
Hai-Xiang Zhou ◽  
Shan-Shan Xu ◽  
Xue-Jing Yin ◽  
Feng-Long Wang ◽  
Yang Li

Alginate oligosaccharides produced by enzymatic degradation show versatile physiological functions and biological activities. In this study, a new alginate lyase encoding gene alyS02 from Flavobacterium sp. S02 was recombinantly expressed at a high level in Yarrowia lipolytica, with the highest extracellular activity in the supernatant reaching 36.8 ± 2.1 U/mL. AlyS02 was classified in the polysaccharide lyase (PL) family 7. The optimal reaction temperature and pH of this enzyme were 30 °C and 7.6, respectively, indicating that AlyS02 is a cold-adapted enzyme. Interestingly, AlyS02 contained more than 90% enzyme activity at 25 °C, higher than other cold-adapted enzymes. Moreover, AlyS02 is a bifunctional alginate lyase that degrades both polyG and polyM, producing di- and trisaccharides from alginate. These findings suggest that AlyS02 would be a potent tool for the industrial applications.


Sign in / Sign up

Export Citation Format

Share Document