scholarly journals 4-Deoxy-l-erythro-5-hexoseulose Uronate (DEH) and DEH Reductase: Key Molecule and Enzyme for the Metabolism and Utilization of Alginate

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 338
Author(s):  
Shigeyuki Kawai ◽  
Wataru Hashimoto

4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.

2021 ◽  
Vol 7 (2) ◽  
pp. 80
Author(s):  
Bo Pilgaard ◽  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Casper Wilkens ◽  
Anne S. Meyer

Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing.


2013 ◽  
Vol 37 (3) ◽  
pp. 575-584 ◽  
Author(s):  
Jiushun Zhou ◽  
Menghao Cai ◽  
Tao Jiang ◽  
Weiqiang Zhou ◽  
Wei Shen ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 296 ◽  
Author(s):  
Thuan Thi Nguyen ◽  
Maria Dalgaard Mikkelsen ◽  
Vy Ha Nguyen Tran ◽  
Vo Thi Dieu Trang ◽  
Nanna Rhein-Knudsen ◽  
...  

Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10–100 kDa and 50–100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.


2014 ◽  
Vol 117 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Shigeyuki Kawai ◽  
Kazuto Ohashi ◽  
Shiori Yoshida ◽  
Mari Fujii ◽  
Shinichi Mikami ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Danrong Lu ◽  
Qingdong Zhang ◽  
Shumin Wang ◽  
Jingwen Guan ◽  
Runmiao Jiao ◽  
...  

Abstract Background Macroalgae and microalgae, as feedstocks for third-generation biofuel, possess competitive strengths in terms of cost, technology and economics. The most important compound in brown macroalgae is alginate, and the synergistic effect of endolytic and exolytic alginate lyases plays a crucial role in the saccharification process of transforming alginate into biofuel. However, there are few studies on the synergistic effect of endolytic and exolytic alginate lyases, especially those from the same bacterial strain. Results In this study, the endolytic alginate lyase AlyPB1 and exolytic alginate lyase AlyPB2 were identified from the marine bacterium Photobacterium sp. FC615. These two enzymes showed quite different and novel enzymatic properties whereas behaved a strong synergistic effect on the saccharification of alginate. Compared to that when AlyPB2 was used alone, the conversion rate of alginate polysaccharides to unsaturated monosaccharides when AlyPB1 and AlyPB2 acted on alginate together was dramatically increased approximately sevenfold. Furthermore, we found that AlyPB1 and AlyPB2 acted the synergistic effect basing on the complementarity of their substrate degradation patterns, particularly due to their M-/G-preference and substrate-size dependence. In addition, a novel method for sequencing alginate oligosaccharides was developed for the first time by combining the 1H NMR spectroscopy and the enzymatic digestion with the exo-lyase AlyPB2, and this method is much simpler than traditional methods based on one- and two-dimensional NMR spectroscopy. Using this strategy, the sequences of the final tetrasaccharide and pentasaccharide product fractions produced by AlyPB1 were easily determined: the tetrasaccharide fractions contained two structures, ΔGMM and ΔMMM, at a molar ratio of 1:3.2, and the pentasaccharide fractions contained four structures, ΔMMMM, ΔMGMM, ΔGMMM, and ΔGGMM, at a molar ratio of ~ 1:1.5:3.5:5.25. Conclusions The identification of these two novel alginate lyases provides not only excellent candidate tool-type enzymes for oligosaccharide preparation but also a good model for studying the synergistic digestion and saccharification of alginate in biofuel production. The novel method for oligosaccharide sequencing described in this study will offer a very useful approach for structural and functional studies on alginate.


Biochemistry ◽  
1996 ◽  
Vol 35 (37) ◽  
pp. 11945-11950 ◽  
Author(s):  
Jon A. Friesen ◽  
C. Martin Lawrence ◽  
Cynthia V. Stauffacher ◽  
Victor W. Rodwell

2016 ◽  
Vol 84 (7) ◽  
pp. 934-947
Author(s):  
Ryuichi Takase ◽  
Yukie Maruyama ◽  
Sayoko Oiki ◽  
Bunzo Mikami ◽  
Kousaku Murata ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 82 ◽  
Author(s):  
Jungyeon Kim ◽  
Yu Cheong ◽  
Inho Jung ◽  
Kyoung Kim

L-Fucose, one of the major monomeric sugars in brown algae, possesses high potential for use in the large-scale production of bio-based products. Although fucose catabolic pathways have been enzymatically evaluated, the effects of fucose as a carbon source on intracellular metabolism in industrial microorganisms such as Escherichia coli are still not identified. To elucidate the effects of fucose on cellular metabolism and to find clues for efficient conversion of fucose into bio-based products, comparative metabolomic and transcriptomic analyses were performed on E. coli on L-fucose and on D-glucose as a control. When fucose was the carbon source for E. coli, integration of the two omics analyses revealed that excess gluconeogenesis and quorum sensing led to severe depletion of ATP, resulting in accumulation and export of fucose extracellularly. Therefore, metabolic engineering and optimization are needed for E. coil to more efficiently ferment fucose. This is the first multi-omics study investigating the effects of fucose on cellular metabolism in E. coli. These omics data and their biological interpretation could be used to assist metabolic engineering of E. coli producing bio-based products using fucose-containing brown macroalgae.


Sign in / Sign up

Export Citation Format

Share Document