scholarly journals Materials Analysis of Furnace Wall Excavated from Songdu-ri Site in Jincheon, Chungbuk

2020 ◽  
Vol 36 (5) ◽  
pp. 421-429
Author(s):  
Won Jin Jang ◽  
Min Su Han
2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


2019 ◽  
Vol 109 ◽  
pp. 00089
Author(s):  
Serhii Skipochka

The goal of the work was to develop a concept of intensification of mining operations, taking into account geomechanical processes occurring in the “rock massif – mining workings – support and protective structures” system. The article is the result of theoretical and experimental research materials analysis and synthesis, carried out for the conditions of coal, non-metallic and iron-ore mines. Positive and negative geomechanical processes and phenomena, occurring during intensification of mining operations, have been substantiated. A set of technical and technological solutions to eliminate the negative phenomena associated with high mining rates development of mineral resources has been proposed. Recommendations, presented in this article, will significantly reduce the conditionally fixed costs of mining production and improve miner’s safety.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc8660
Author(s):  
F. Mirani ◽  
A. Maffini ◽  
F. Casamichiela ◽  
A. Pazzaglia ◽  
A. Formenti ◽  
...  

Among the existing elemental characterization techniques, particle-induced x-ray emission (PIXE) and energy-dispersive x-ray (EDX) spectroscopy are two of the most widely used in different scientific and technological fields. Here, we present the first quantitative laser-driven PIXE and laser-driven EDX experimental investigation performed at the Centro de Láseres Pulsados in Salamanca. Thanks to their potential for compactness and portability, laser-driven particle sources are very appealing for materials science applications, especially for materials analysis techniques. We demonstrate the possibility to exploit the x-ray signal produced by the co-irradiation with both electrons and protons to identify the elements in the sample. We show that, using the proton beam only, we can successfully obtain quantitative information about the sample structure through laser-driven PIXE analysis. These results pave the way toward the development of a compact and multifunctional apparatus for the elemental analysis of materials based on a laser-driven particle source.


2021 ◽  
Vol 92 (4) ◽  
pp. 045108
Author(s):  
C. J. Beers ◽  
C. Jaramillo ◽  
N. C. Reid ◽  
H. Schamis ◽  
J. P. Allain ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qing Wu ◽  
Max Döbeli ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
Benjamin Watts ◽  
...  

AbstractIn the previous paper (Part I), the colorimetry and interferometric microscopy measurements on modern gold leaf models have revealed that the visual appearance of a gilded surface, both burnished and unburnished, depends strongly on the substrate type, surface roughness and texture, but not on the colour of the substrate. In this second part, we investigate the materials compositions and technical specifications of medieval gold leaf through combining literature sources and materials analysis such as scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM–EDX) on samples taken from gilded wooden sculptures. Our study shows that the late medieval gold leaf has a high purity of about 23.7 carat and has an average thickness of 160 nm (with a peak value of 138 nm), purer and thicker than the modern gold leaves studies in Part I. Supportive Rutherford backscattering spectrometry (RBS) measurements on gilded models confirms the accuracy and reliability of the SEM–EDX observations on the medieval gold leaf samples. We additionally present observations of a rarely recorded special variant of medieval gold leaf—“fine reinforced gold leaf”. Combined with the findings from Part I, we conclude that light penetrating the medieval gold leaf and reflected from the gilding substrate could not be a significant, or even perceptible contribution to the visual appearance of the gilding. We argue that the misconception surrounding the correlation between the substrate colour and the gilded surface appearance can be attributed to the historical development of gilding and polychromy technologies.


1978 ◽  
Vol 153 (1) ◽  
pp. 253-257 ◽  
Author(s):  
G.R. Mahajan ◽  
N.K. Chaudhuri ◽  
R. Sampathkumar ◽  
R.H. Iyer

1998 ◽  
Vol 31 (23) ◽  
pp. 267-271 ◽  
Author(s):  
L. Lassus ◽  
H. Saxén
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document